Skip to content

A Clojure dataframe library that runs on Spark

License

Notifications You must be signed in to change notification settings

matthewedwarddavidson/geni

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Geni (/gÉśni/ or "gurney" without the r) is a Clojure library that wraps Apache Spark. The name means "fire" in Javanese.

WARNING! This library is still unstable. Some information here may be outdated. Do not use it in production just yet! See Flambo and Sparkling for more mature alternatives.

CI Code Coverage Clojars Project License

Overview

Geni is designed to provide an idiomatic Spark interface for Clojure without the hassle of Java or Scala interop. Geni uses Clojure's -> threading macro as the main way to compose Spark's Dataset and Column operations in place of the usual method chaining in Scala. It also provides a greater degree of dynamism by allowing args of mixed types such as columns, strings and keywords in a single function invocation. See the docs section on Geni semantics for more details.

Resources

Docs:

Geni Cookbook:

  1. Getting Started with Clojure, Geni and Spark
  2. Reading and Creating Datasets
  3. Selecting Rows and Columns
  4. Grouping and Aggregating
  5. Combining Datasets with Joins and Unions
  6. String Operations
  7. Cleaning up Messy Data
  8. Timestamps and Dates
  9. Window Functions
  10. Reading From and Writing To SQL Databases
  11. Avoiding Repeated Computations with Caching
  12. [TBD] Transforming ML Features with Pipelines
  13. [TBD] Regression, Classification and Clustering
  14. [TBD] A Basic Recommender System with ALS
  15. [TBD] Working with Scala Interop
  16. [TBD] Basic RDD Operations

cljdoc slack

Basic Examples

All examples below use the Melbourne housing market data available for free on Kaggle.

Spark SQL API for data wrangling:

(require '[zero-one.geni.core :as g])

(g/count dataframe)
=> 13580

(g/print-schema dataframe)
; root
;  |-- Suburb: string (nullable = true)
;  |-- Address: string (nullable = true)
;  |-- Rooms: long (nullable = true)
;  |-- Type: string (nullable = true)
;  |-- Price: double (nullable = true)
;  |-- Method: string (nullable = true)
;  |-- SellerG: string (nullable = true)
;  |-- Date: string (nullable = true)
;  |-- Distance: double (nullable = true)
;  |-- Postcode: double (nullable = true)
;  |-- Bedroom2: double (nullable = true)
;  |-- Bathroom: double (nullable = true)
;  |-- Car: double (nullable = true)
;  |-- Landsize: double (nullable = true)
;  |-- BuildingArea: double (nullable = true)
;  |-- YearBuilt: double (nullable = true)
;  |-- CouncilArea: string (nullable = true)
;  |-- Lattitude: double (nullable = true)
;  |-- Longtitude: double (nullable = true)
;  |-- Regionname: string (nullable = true)
;  |-- Propertycount: double (nullable = true)

(-> dataframe (g/limit 5) g/show)
; +----------+----------------+-----+----+---------+------+-------+---------+--------+--------+--------+--------+---+--------+------------+---------+-----------+---------+----------+---------------------+-------------+
; |Suburb    |Address         |Rooms|Type|Price    |Method|SellerG|Date     |Distance|Postcode|Bedroom2|Bathroom|Car|Landsize|BuildingArea|YearBuilt|CouncilArea|Lattitude|Longtitude|Regionname           |Propertycount|
; +----------+----------------+-----+----+---------+------+-------+---------+--------+--------+--------+--------+---+--------+------------+---------+-----------+---------+----------+---------------------+-------------+
; |Abbotsford|85 Turner St    |2    |h   |1480000.0|S     |Biggin |3/12/2016|2.5     |3067.0  |2.0     |1.0     |1.0|202.0   |null        |null     |Yarra      |-37.7996 |144.9984  |Northern Metropolitan|4019.0       |
; |Abbotsford|25 Bloomburg St |2    |h   |1035000.0|S     |Biggin |4/02/2016|2.5     |3067.0  |2.0     |1.0     |0.0|156.0   |79.0        |1900.0   |Yarra      |-37.8079 |144.9934  |Northern Metropolitan|4019.0       |
; |Abbotsford|5 Charles St    |3    |h   |1465000.0|SP    |Biggin |4/03/2017|2.5     |3067.0  |3.0     |2.0     |0.0|134.0   |150.0       |1900.0   |Yarra      |-37.8093 |144.9944  |Northern Metropolitan|4019.0       |
; |Abbotsford|40 Federation La|3    |h   |850000.0 |PI    |Biggin |4/03/2017|2.5     |3067.0  |3.0     |2.0     |1.0|94.0    |null        |null     |Yarra      |-37.7969 |144.9969  |Northern Metropolitan|4019.0       |
; |Abbotsford|55a Park St     |4    |h   |1600000.0|VB    |Nelson |4/06/2016|2.5     |3067.0  |3.0     |1.0     |2.0|120.0   |142.0       |2014.0   |Yarra      |-37.8072 |144.9941  |Northern Metropolitan|4019.0       |
; +----------+----------------+-----+----+---------+------+-------+---------+--------+--------+--------+--------+---+--------+------------+---------+-----------+---------+----------+---------------------+-------------+

(-> dataframe (g/describe :Landsize :Rooms :Price) g/show)
; +-------+-----------------+------------------+-----------------+
; |summary|Landsize         |Rooms             |Price            |
; +-------+-----------------+------------------+-----------------+
; |count  |13580            |13580             |13580            |
; |mean   |558.4161266568483|2.9379970544919   |1075684.079455081|
; |stddev |3990.669241109034|0.9557479384215565|639310.7242960163|
; |min    |0.0              |1                 |85000.0          |
; |max    |433014.0         |10                |9000000.0        |
; +-------+-----------------+------------------+-----------------+

(-> dataframe
    (g/group-by :Suburb)
    (g/agg {:count     (g/count "*")
            :n-sellers (g/count-distinct :SellerG)
            :avg-price (g/int (g/mean :Price))})
    (g/order-by (g/desc :count))
    (g/limit 5)
    g/show)
; +--------------+-----+---------+---------+
; |Suburb        |count|n-sellers|avg-price|
; +--------------+-----+---------+---------+
; |Reservoir     |359  |18       |690008   |
; |Richmond      |260  |22       |1083564  |
; |Bentleigh East|249  |21       |1085591  |
; |Preston       |239  |20       |902800   |
; |Brunswick     |222  |21       |1013171  |
; +--------------+-----+---------+---------+

(-> dataframe
    (g/select {:address :Address
               :date    (g/to-date :Date "d/MM/yyyy")
               :coord   (g/struct {:lat :Lattitude :long :Longtitude})})
    g/shuffle
    (g/limit 5)
    g/collect)
=> ({:address "114 Shields St",
     :date #inst "2016-05-21T17:00:00.000-00:00",
     :coord {:lat -37.7847, :long 144.9341}}
    {:address "129 Glenlyon Rd",
     :date #inst "2017-05-05T17:00:00.000-00:00",
     :coord {:lat -37.7723, :long 144.9694}}
    {:address "48 Lyons St",
     :date #inst "2016-04-15T17:00:00.000-00:00",
     :coord {:lat -37.8955, :long 145.0515}}
    {:address "3/31 Clapham St",
     :date #inst "2017-05-19T17:00:00.000-00:00",
     :coord {:lat -37.7549, :long 144.9979}}
    {:address "327 Hull Rd",
     :date #inst "2017-09-08T17:00:00.000-00:00",
     :coord {:lat -37.78329, :long 145.32271}})

Spark ML example translated from Spark's programming guide:

(require '[zero-one.geni.core :as g])
(require '[zero-one.geni.ml :as ml])

(def training-set
  (g/table->dataset
    [[0 "a b c d e spark"  1.0]
     [1 "b d"              0.0]
     [2 "spark f g h"      1.0]
     [3 "hadoop mapreduce" 0.0]]
    [:id :text :label]))

(def pipeline
  (ml/pipeline
    (ml/tokenizer {:input-col :text
                   :output-col :words})
    (ml/hashing-tf {:num-features 1000
                    :input-col :words
                    :output-col :features})
    (ml/logistic-regression {:max-iter 10
                             :reg-param 0.001})))

(def model (ml/fit training-set pipeline))

(def test-set
  (g/table->dataset
    [[4 "spark i j k"]
     [5 "l m n"]
     [6 "spark hadoop spark"]
     [7 "apache hadoop"]]
    [:id :text]))

(-> test-set
    (ml/transform model)
    (g/select :id :text :probability :prediction)
    g/show)
;; +---+------------------+----------------------------------------+----------+
;; |id |text              |probability                             |prediction|
;; +---+------------------+----------------------------------------+----------+
;; |4  |spark i j k       |[0.1596407738787411,0.8403592261212589] |1.0       |
;; |5  |l m n             |[0.8378325685476612,0.16216743145233883]|0.0       |
;; |6  |spark hadoop spark|[0.0692663313297627,0.9307336686702373] |1.0       |
;; |7  |apache hadoop     |[0.9821575333444208,0.01784246665557917]|0.0       |
;; +---+------------------+----------------------------------------+----------+

More detailed examples can be found here.There is also a one-to-one walkthrough of Chapter 5 of NVIDIA's Accelerating Apache Spark 3.x, which can be found here.

Quick Start

Install Geni

Install the geni script to /usr/local/bin with:

wget https://raw.githubusercontent.com/zero-one-group/geni/develop/scripts/geni
chmod a+x geni
sudo mv geni /usr/local/bin/

The command geni downloads the latest Geni uberjar and places it in ~/.geni/geni-repl-uberjar.jar, and runs it with java -jar.

Uberjar

Download the latest Geni REPL uberjar from the release page. Run the uberjar as follows:

java -jar <uberjar-name>

The uberjar app prints the default SparkSession instance, starts an nREPL server with an .nrepl-port file for easy text-editor connection and steps into a Clojure REPL(-y).

Leiningen Template

Use Leiningen to create a template of a Geni project:

lein new geni <project-name>

cd into the project directory and do lein run. The templated app runs a Spark ML example, and then steps into a Clojure REPL-y with an .nrepl-port file.

Screencast Demos

Install Uberjar Leiningen

Installation

Add the following to your project.clj dependency:

Clojars Project

You would also need to add Spark as provided dependencies. For instance, have the following key-value pair for the :profiles map:

:provided
{:dependencies [;; Spark
                [org.apache.spark/spark-avro_2.12 "3.0.0"]
                [org.apache.spark/spark-core_2.12 "3.0.0"]
                [org.apache.spark/spark-hive_2.12 "3.0.0"]
                [org.apache.spark/spark-mllib_2.12 "3.0.0"]
                [org.apache.spark/spark-sql_2.12 "3.0.0"]
                [org.apache.spark/spark-streaming_2.12 "3.0.0"]
                [com.github.fommil.netlib/all "1.1.2" :extension "pom"]
                ;; Databases
                [mysql/mysql-connector-java "8.0.21"]
                [org.postgresql/postgresql "42.2.14"]
                [org.xerial/sqlite-jdbc "3.32.3.1"]
                ;; Optional: Spark XGBoost
                [ml.dmlc/xgboost4j-spark_2.12 "1.0.0"]
                [ml.dmlc/xgboost4j_2.12 "1.0.0"]]}

You may also need to install libatlas3-base and libopenblas-base to use a native BLAS, and install libgomp1 to train XGBoost4J models. When the optional dependencies are not present, the vars to the corresponding functions (such as ml/xgboost-classifier) will be left unbound.

License

Copyright 2020 Zero One Group.

Geni is licensed under Apache License v2.0, see LICENSE.

Mentions

Some code was taken from:

About

A Clojure dataframe library that runs on Spark

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Clojure 95.5%
  • Java 2.8%
  • Other 1.7%