forked from pybamm-team/PyBaMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulation.py
1257 lines (1108 loc) · 52.1 KB
/
simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#
# Simulation class
#
from __future__ import annotations
import pickle
import pybamm
import numpy as np
import hashlib
import warnings
import sys
from functools import lru_cache
from datetime import timedelta
from pybamm.util import import_optional_dependency
from pybamm.expression_tree.operations.serialise import Serialise
def is_notebook():
try:
shell = get_ipython().__class__.__name__
if shell == "ZMQInteractiveShell": # pragma: no cover
# Jupyter notebook or qtconsole
cfg = get_ipython().config
nb = len(cfg["InteractiveShell"].keys()) == 0
return nb
elif shell == "TerminalInteractiveShell": # pragma: no cover
return False # Terminal running IPython
elif shell == "Shell": # pragma: no cover
return True # Google Colab notebook
else: # pragma: no cover
return False # Other type (?)
except NameError:
return False # Probably standard Python interpreter
class Simulation:
"""A Simulation class for easy building and running of PyBaMM simulations.
Parameters
----------
model : :class:`pybamm.BaseModel`
The model to be simulated
experiment : :class:`pybamm.Experiment` or string or list (optional)
The experimental conditions under which to solve the model. If a string is
passed, the experiment is constructed as `pybamm.Experiment([experiment])`. If
a list is passed, the experiment is constructed as
`pybamm.Experiment(experiment)`.
geometry: :class:`pybamm.Geometry` (optional)
The geometry upon which to solve the model
parameter_values: :class:`pybamm.ParameterValues` (optional)
Parameters and their corresponding numerical values.
submesh_types: dict (optional)
A dictionary of the types of submesh to use on each subdomain
var_pts: dict (optional)
A dictionary of the number of points used by each spatial variable
spatial_methods: dict (optional)
A dictionary of the types of spatial method to use on each
domain (e.g. pybamm.FiniteVolume)
solver: :class:`pybamm.BaseSolver` (optional)
The solver to use to solve the model.
output_variables: list (optional)
A list of variables to plot automatically
C_rate: float (optional)
The C-rate at which you would like to run a constant current (dis)charge.
"""
def __init__(
self,
model,
experiment=None,
geometry=None,
parameter_values=None,
submesh_types=None,
var_pts=None,
spatial_methods=None,
solver=None,
output_variables=None,
C_rate=None,
):
self._parameter_values = parameter_values or model.default_parameter_values
self._unprocessed_parameter_values = self._parameter_values
if isinstance(model, pybamm.lithium_ion.BasicDFNHalfCell):
if experiment is not None:
raise NotImplementedError(
"BasicDFNHalfCell is not compatible with experiment simulations."
)
if experiment is None:
# Check to see if the current is provided as data (i.e. drive cycle)
current = self._parameter_values.get("Current function [A]")
if isinstance(current, pybamm.Interpolant):
self.operating_mode = "drive cycle"
else:
self.operating_mode = "without experiment"
if C_rate:
self.C_rate = C_rate
self._parameter_values.update(
{
"Current function [A]": self.C_rate
* self._parameter_values["Nominal cell capacity [A.h]"]
}
)
else:
if isinstance(experiment, (str, pybamm.step._Step)):
experiment = pybamm.Experiment([experiment])
elif isinstance(experiment, list):
experiment = pybamm.Experiment(experiment)
elif not isinstance(experiment, pybamm.Experiment):
raise TypeError(
"experiment must be a pybamm `Experiment` instance, a single "
"experiment step, or a list of experiment steps"
)
self.operating_mode = "with experiment"
# Save the experiment
self.experiment = experiment.copy()
self._unprocessed_model = model
self._model = model
self._geometry = geometry or self._model.default_geometry
self._submesh_types = submesh_types or self._model.default_submesh_types
self._var_pts = var_pts or self._model.default_var_pts
self._spatial_methods = spatial_methods or self._model.default_spatial_methods
self._solver = solver or self._model.default_solver
self._output_variables = output_variables
# Initialize empty built states
self._model_with_set_params = None
self._built_model = None
self._built_initial_soc = None
self.op_conds_to_built_models = None
self.op_conds_to_built_solvers = None
self._mesh = None
self._disc = None
self._solution = None
self.quick_plot = None
# Initialise instances of Simulation class with the same random seed
self._set_random_seed()
# ignore runtime warnings in notebooks
if is_notebook(): # pragma: no cover
import warnings
warnings.filterwarnings("ignore")
self.get_esoh_solver = lru_cache()(self._get_esoh_solver)
def __getstate__(self):
"""
Return dictionary of picklable items
"""
result = self.__dict__.copy()
result["get_esoh_solver"] = None # Exclude LRU cache
return result
def __setstate__(self, state):
"""
Unpickle, restoring unpicklable relationships
"""
self.__dict__ = state
self.get_esoh_solver = lru_cache()(self._get_esoh_solver)
# If the solver being used is CasadiSolver or its variants, set a fixed
# random seed during class initialization to the SHA-256 hash of the class
# name for purposes of reproducibility.
def _set_random_seed(self):
if isinstance(self._solver, pybamm.CasadiSolver) or isinstance(
self._solver, pybamm.CasadiAlgebraicSolver
):
np.random.seed(
int(hashlib.sha256(self.__class__.__name__.encode()).hexdigest(), 16)
% (2**32)
)
def set_up_and_parameterise_experiment(self):
"""
Set up a simulation to run with an experiment. This creates a dictionary of
inputs (current/voltage/power, running time, stopping condition) for each
operating condition in the experiment. The model will then be solved by
integrating the model successively with each group of inputs, one group at a
time.
This needs to be done here and not in the Experiment class because the nominal
cell capacity (from the parameters) is used to convert C-rate to current.
"""
# Update experiment using capacity
capacity = self._parameter_values["Nominal cell capacity [A.h]"]
for op_conds in self.experiment.operating_conditions_steps:
if op_conds.type == "C-rate":
op_conds.type = "current"
op_conds.value = op_conds.value * capacity
# Add time to the experiment times
dt = op_conds.duration
if dt is None:
if op_conds.type == "current":
# Current control: max simulation time: 3h / C-rate
Crate = op_conds.value / capacity
dt = 3 / abs(Crate) * 3600 # seconds
else:
# max simulation time: 1 day
dt = 24 * 3600 # seconds
op_conds.duration = dt
# Set up model for experiment
self.set_up_and_parameterise_model_for_experiment()
def set_up_and_parameterise_model_for_experiment(self):
"""
Set up self._model to be able to run the experiment (new version).
In this version, a new model is created for each step.
This increases set-up time since several models to be processed, but
reduces simulation time since the model formulation is efficient.
"""
self.experiment_unique_steps_to_model = {}
for op_number, op in enumerate(self.experiment.unique_steps):
new_model = self._model.new_copy()
new_parameter_values = self._parameter_values.copy()
if op.type != "current":
# Voltage or power control
# Create a new model where the current density is now a variable
# To do so, we replace all instances of the current density in the
# model with a current density variable, which is obtained from the
# FunctionControl submodel
# check which kind of external circuit model we need (differential
# or algebraic)
if op.type == "voltage":
submodel_class = pybamm.external_circuit.VoltageFunctionControl
elif op.type == "power":
submodel_class = pybamm.external_circuit.PowerFunctionControl
# Build the new submodel and update the model with it
submodel = submodel_class(new_model.param, new_model.options)
variables = new_model.variables
submodel.variables = submodel.get_fundamental_variables()
variables.update(submodel.variables)
submodel.variables.update(submodel.get_coupled_variables(variables))
variables.update(submodel.variables)
submodel.set_rhs(variables)
submodel.set_algebraic(variables)
submodel.set_initial_conditions(variables)
new_model.rhs.update(submodel.rhs)
new_model.algebraic.update(submodel.algebraic)
new_model.initial_conditions.update(submodel.initial_conditions)
# Set the "current function" to be the variable defined in the submodel
new_parameter_values["Current function [A]"] = submodel.variables[
"Current [A]"
]
self.update_new_model_events(new_model, op)
# Update parameter values
self._original_temperature = new_parameter_values["Ambient temperature [K]"]
experiment_parameter_values = self.get_experiment_parameter_values(
op, op_number
)
new_parameter_values.update(
experiment_parameter_values, check_already_exists=False
)
parameterised_model = new_parameter_values.process_model(
new_model, inplace=False
)
self.experiment_unique_steps_to_model[op.basic_repr()] = parameterised_model
# Set up rest model if experiment has start times
if self.experiment.initial_start_time:
new_model = self._model.new_copy()
# Update parameter values
new_parameter_values = self._parameter_values.copy()
self._original_temperature = new_parameter_values["Ambient temperature [K]"]
new_parameter_values.update(
{"Current function [A]": 0, "Ambient temperature [K]": "[input]"},
check_already_exists=False,
)
parameterised_model = new_parameter_values.process_model(
new_model, inplace=False
)
self.experiment_unique_steps_to_model["Rest for padding"] = (
parameterised_model
)
def update_new_model_events(self, new_model, op):
for term in op.termination:
event = term.get_event(new_model.variables, op.value)
if event is not None:
new_model.events.append(event)
# Keep the min and max voltages as safeguards but add some tolerances
# so that they are not triggered before the voltage limits in the
# experiment
for i, event in enumerate(new_model.events):
if event.name in ["Minimum voltage [V]", "Maximum voltage [V]"]:
new_model.events[i] = pybamm.Event(
event.name, event.expression + 1, event.event_type
)
def get_experiment_parameter_values(self, op, op_number):
experiment_parameter_values = {
f"{op.type.capitalize()} function {op.unit}": op.value
}
if op.temperature is not None:
ambient_temperature = op.temperature
experiment_parameter_values.update(
{"Ambient temperature [K]": ambient_temperature}
)
# If at the first operation, then the intial temperature
# should be the ambient temperature.
if op_number == 0:
experiment_parameter_values.update(
{"Initial temperature [K]": ambient_temperature}
)
else:
experiment_parameter_values.update(
{"Ambient temperature [K]": self._original_temperature}
)
return experiment_parameter_values
def set_parameters(self):
"""
A method to set the parameters in the model and the associated geometry.
"""
if self.model_with_set_params:
return
self._model_with_set_params = self._parameter_values.process_model(
self._unprocessed_model, inplace=False
)
self._parameter_values.process_geometry(self._geometry)
self._model = self._model_with_set_params
def set_initial_soc(self, initial_soc):
if self._built_initial_soc != initial_soc:
# reset
self._model_with_set_params = None
self._built_model = None
self.op_conds_to_built_models = None
self.op_conds_to_built_solvers = None
options = self.model.options
param = self._model.param
if options["open-circuit potential"] == "MSMR":
self._parameter_values = (
self._unprocessed_parameter_values.set_initial_ocps(
initial_soc, param=param, inplace=False, options=options
)
)
elif options["working electrode"] == "positive":
self._parameter_values = (
self._unprocessed_parameter_values.set_initial_stoichiometry_half_cell(
initial_soc, param=param, inplace=False, options=options
)
)
else:
self._parameter_values = (
self._unprocessed_parameter_values.set_initial_stoichiometries(
initial_soc, param=param, inplace=False, options=options
)
)
# Save solved initial SOC in case we need to re-build the model
self._built_initial_soc = initial_soc
def build(self, check_model=True, initial_soc=None):
"""
A method to build the model into a system of matrices and vectors suitable for
performing numerical computations. If the model has already been built or
solved then this function will have no effect.
This method will automatically set the parameters
if they have not already been set.
Parameters
----------
check_model : bool, optional
If True, model checks are performed after discretisation (see
:meth:`pybamm.Discretisation.process_model`). Default is True.
initial_soc : float, optional
Initial State of Charge (SOC) for the simulation. Must be between 0 and 1.
If given, overwrites the initial concentrations provided in the parameter
set.
"""
if initial_soc is not None:
self.set_initial_soc(initial_soc)
if self.built_model:
return
elif self._model.is_discretised:
self._model_with_set_params = self._model
self._built_model = self._model
else:
self.set_parameters()
self._mesh = pybamm.Mesh(self._geometry, self._submesh_types, self._var_pts)
self._disc = pybamm.Discretisation(self._mesh, self._spatial_methods)
self._built_model = self._disc.process_model(
self._model_with_set_params, inplace=False, check_model=check_model
)
# rebuilt model so clear solver setup
self._solver._model_set_up = {}
def build_for_experiment(self, check_model=True, initial_soc=None):
"""
Similar to :meth:`Simulation.build`, but for the case of simulating an
experiment, where there may be several models and solvers to build.
"""
if initial_soc is not None:
self.set_initial_soc(initial_soc)
if self.op_conds_to_built_models:
return
else:
self.set_up_and_parameterise_experiment()
# Can process geometry with default parameter values (only electrical
# parameters change between parameter values)
self._parameter_values.process_geometry(self._geometry)
# Only needs to set up mesh and discretisation once
self._mesh = pybamm.Mesh(self._geometry, self._submesh_types, self._var_pts)
self._disc = pybamm.Discretisation(self._mesh, self._spatial_methods)
# Process all the different models
self.op_conds_to_built_models = {}
self.op_conds_to_built_solvers = {}
for (
op_cond,
model_with_set_params,
) in self.experiment_unique_steps_to_model.items():
# It's ok to modify the model with set parameters in place as it's
# not returned anywhere
built_model = self._disc.process_model(
model_with_set_params, inplace=True, check_model=check_model
)
solver = self._solver.copy()
self.op_conds_to_built_solvers[op_cond] = solver
self.op_conds_to_built_models[op_cond] = built_model
def solve(
self,
t_eval=None,
solver=None,
check_model=True,
save_at_cycles=None,
calc_esoh=True,
starting_solution=None,
initial_soc=None,
callbacks=None,
showprogress=False,
**kwargs,
):
"""
A method to solve the model. This method will automatically build
and set the model parameters if not already done so.
Parameters
----------
t_eval : numeric type, optional
The times (in seconds) at which to compute the solution. Can be
provided as an array of times at which to return the solution, or as a
list `[t0, tf]` where `t0` is the initial time and `tf` is the final time.
If provided as a list the solution is returned at 100 points within the
interval `[t0, tf]`.
If not using an experiment or running a drive cycle simulation (current
provided as data) `t_eval` *must* be provided.
If running an experiment the values in `t_eval` are ignored, and the
solution times are specified by the experiment.
If None and the parameter "Current function [A]" is read from data
(i.e. drive cycle simulation) the model will be solved at the times
provided in the data.
solver : :class:`pybamm.BaseSolver`, optional
The solver to use to solve the model. If None, Simulation.solver is used
check_model : bool, optional
If True, model checks are performed after discretisation (see
:meth:`pybamm.Discretisation.process_model`). Default is True.
save_at_cycles : int or list of ints, optional
Which cycles to save the full sub-solutions for. If None, all cycles are
saved. If int, every multiple of save_at_cycles is saved. If list, every
cycle in the list is saved. The first cycle (cycle 1) is always saved.
calc_esoh : bool, optional
Whether to include eSOH variables in the summary variables. If `False`
then only summary variables that do not require the eSOH calculation
are calculated. Default is True.
starting_solution : :class:`pybamm.Solution`
The solution to start stepping from. If None (default), then self._solution
is used. Must be None if not using an experiment.
initial_soc : float, optional
Initial State of Charge (SOC) for the simulation. Must be between 0 and 1.
If given, overwrites the initial concentrations provided in the parameter
set.
callbacks : list of callbacks, optional
A list of callbacks to be called at each time step. Each callback must
implement all the methods defined in :class:`pybamm.callbacks.BaseCallback`.
showprogress : bool, optional
Whether to show a progress bar for cycling. If true, shows a progress bar
for cycles. Has no effect when not used with an experiment.
Default is False.
**kwargs
Additional key-word arguments passed to `solver.solve`.
See :meth:`pybamm.BaseSolver.solve`.
"""
# Setup
if solver is None:
solver = self._solver
callbacks = pybamm.callbacks.setup_callbacks(callbacks)
logs = {}
if self.operating_mode in ["without experiment", "drive cycle"]:
self.build(check_model=check_model, initial_soc=initial_soc)
if save_at_cycles is not None:
raise ValueError(
"'save_at_cycles' option can only be used if simulating an "
"Experiment "
)
if starting_solution is not None:
raise ValueError(
"starting_solution can only be provided if simulating an Experiment"
)
if (
self.operating_mode == "without experiment"
or "ElectrodeSOH" in self._model.name
):
if t_eval is None:
raise pybamm.SolverError(
"'t_eval' must be provided if not using an experiment or "
"simulating a drive cycle. 't_eval' can be provided as an "
"array of times at which to return the solution, or as a "
"list [t0, tf] where t0 is the initial time and tf is the "
"final time. "
"For a constant current (dis)charge the suggested 't_eval' "
"is [0, 3700/C] where C is the C-rate. "
"For example, run\n\n"
"\tsim.solve([0, 3700])\n\n"
"for a 1C discharge."
)
elif self.operating_mode == "drive cycle":
# For drive cycles (current provided as data) we perform additional
# tests on t_eval (if provided) to ensure the returned solution
# captures the input.
time_data = self._parameter_values["Current function [A]"].x[0]
# If no t_eval is provided, we use the times provided in the data.
if t_eval is None:
pybamm.logger.info("Setting t_eval as specified by the data")
t_eval = time_data
# If t_eval is provided we first check if it contains all of the
# times in the data to within 10-12. If it doesn't, we then check
# that the largest gap in t_eval is smaller than the smallest gap in
# the time data (to ensure the resolution of t_eval is fine enough).
# We only raise a warning here as users may genuinely only want
# the solution returned at some specified points.
elif (
set(np.round(time_data, 12)).issubset(set(np.round(t_eval, 12)))
) is False:
warnings.warn(
"""
t_eval does not contain all of the time points in the data
set. Note: passing t_eval = None automatically sets t_eval
to be the points in the data.
""",
pybamm.SolverWarning,
stacklevel=2,
)
dt_data_min = np.min(np.diff(time_data))
dt_eval_max = np.max(np.diff(t_eval))
if dt_eval_max > dt_data_min + sys.float_info.epsilon:
warnings.warn(
f"""
The largest timestep in t_eval ({dt_eval_max}) is larger than
the smallest timestep in the data ({dt_data_min}). The returned
solution may not have the correct resolution to accurately
capture the input. Try refining t_eval. Alternatively,
passing t_eval = None automatically sets t_eval to be the
points in the data.
""",
pybamm.SolverWarning,
stacklevel=2,
)
self._solution = solver.solve(self.built_model, t_eval, **kwargs)
elif self.operating_mode == "with experiment":
callbacks.on_experiment_start(logs)
self.build_for_experiment(check_model=check_model, initial_soc=initial_soc)
if t_eval is not None:
pybamm.logger.warning(
"Ignoring t_eval as solution times are specified by the experiment"
)
# Re-initialize solution, e.g. for solving multiple times with different
# inputs without having to build the simulation again
self._solution = starting_solution
# Step through all experimental conditions
user_inputs = kwargs.get("inputs", {})
timer = pybamm.Timer()
# Set up eSOH solver (for summary variables)
esoh_solver = self.get_esoh_solver(calc_esoh)
if starting_solution is None:
starting_solution_cycles = []
starting_solution_summary_variables = []
starting_solution_first_states = []
elif not hasattr(starting_solution, "all_summary_variables"):
(
cycle_solution,
cycle_sum_vars,
cycle_first_state,
) = pybamm.make_cycle_solution(
[starting_solution],
esoh_solver=esoh_solver,
save_this_cycle=True,
)
starting_solution_cycles = [cycle_solution]
starting_solution_summary_variables = [cycle_sum_vars]
starting_solution_first_states = [cycle_first_state]
else:
starting_solution_cycles = starting_solution.cycles.copy()
starting_solution_summary_variables = (
starting_solution.all_summary_variables.copy()
)
starting_solution_first_states = (
starting_solution.all_first_states.copy()
)
# set simulation initial_start_time
if starting_solution is None:
initial_start_time = self.experiment.initial_start_time
else:
initial_start_time = starting_solution.initial_start_time
if (
initial_start_time is None
and self.experiment.initial_start_time is not None
):
raise ValueError(
"When using experiments with `start_time`, the starting_solution "
"must have a `start_time` too."
)
cycle_offset = len(starting_solution_cycles)
all_cycle_solutions = starting_solution_cycles
all_summary_variables = starting_solution_summary_variables
all_first_states = starting_solution_first_states
current_solution = starting_solution or pybamm.EmptySolution()
voltage_stop = self.experiment.termination.get("voltage")
logs["stopping conditions"] = {"voltage": voltage_stop}
idx = 0
num_cycles = len(self.experiment.cycle_lengths)
feasible = True # simulation will stop if experiment is infeasible
# Add initial padding rest if current time is earlier than first start time
# This could be the case when using a starting solution
if starting_solution is not None:
op_conds = self.experiment.operating_conditions_steps[0]
if op_conds.start_time is not None:
rest_time = (
op_conds.start_time
- (
initial_start_time
+ timedelta(seconds=float(current_solution.t[-1]))
)
).total_seconds()
if rest_time > pybamm.settings.step_start_offset:
# logs["step operating conditions"] = "Initial rest for padding"
# callbacks.on_step_start(logs)
kwargs["inputs"] = {
**user_inputs,
"Ambient temperature [K]": (
op_conds.temperature or self._original_temperature
),
"start time": current_solution.t[-1],
}
steps = current_solution.cycles[-1].steps
step_solution = current_solution.cycles[-1].steps[-1]
step_solution_with_rest = self.run_padding_rest(
kwargs, rest_time, step_solution
)
steps[-1] = step_solution + step_solution_with_rest
cycle_solution, _, _ = pybamm.make_cycle_solution(
steps, esoh_solver=esoh_solver, save_this_cycle=True
)
old_cycles = current_solution.cycles.copy()
old_cycles[-1] = cycle_solution
current_solution += step_solution_with_rest
current_solution.cycles = old_cycles
# Update _solution
self._solution = current_solution
# check if a user has tqdm installed
if showprogress:
tqdm = import_optional_dependency("tqdm")
cycle_lengths = tqdm.tqdm(
self.experiment.cycle_lengths,
desc="Cycling",
)
else:
cycle_lengths = self.experiment.cycle_lengths
for cycle_num, cycle_length in enumerate(
cycle_lengths,
start=1,
):
logs["cycle number"] = (
cycle_num + cycle_offset,
num_cycles + cycle_offset,
)
logs["elapsed time"] = timer.time()
callbacks.on_cycle_start(logs)
steps = []
cycle_solution = None
# Decide whether we should save this cycle
save_this_cycle = (
# always save cycle 1
cycle_num == 1
# always save last cycle
or cycle_num == num_cycles
# None: save all cycles
or save_at_cycles is None
# list: save all cycles in the list
or (
isinstance(save_at_cycles, list)
and cycle_num + cycle_offset in save_at_cycles
)
# int: save all multiples
or (
isinstance(save_at_cycles, int)
and (cycle_num + cycle_offset) % save_at_cycles == 0
)
)
for step_num in range(1, cycle_length + 1):
# Use 1-indexing for printing cycle number as it is more
# human-intuitive
op_conds = self.experiment.operating_conditions_steps[idx]
# Hacky patch to allow correct processing of end_time and next_starting time
# For efficiency purposes, op_conds treats identical steps as the same object
# regardless of the initial time. Should be refactored as part of #3176
op_conds_unproc = (
self.experiment.operating_conditions_steps_unprocessed[idx]
)
start_time = current_solution.t[-1]
# If step has an end time, dt must take that into account
if getattr(op_conds_unproc, "end_time", None):
dt = min(
op_conds.duration,
(
op_conds_unproc.end_time
- (
initial_start_time
+ timedelta(seconds=float(start_time))
)
).total_seconds(),
)
else:
dt = op_conds.duration
op_conds_str = str(op_conds)
model = self.op_conds_to_built_models[op_conds.basic_repr()]
solver = self.op_conds_to_built_solvers[op_conds.basic_repr()]
logs["step number"] = (step_num, cycle_length)
logs["step operating conditions"] = op_conds_str
callbacks.on_step_start(logs)
kwargs["inputs"] = {
**user_inputs,
"start time": start_time,
}
# Make sure we take at least 2 timesteps
npts = max(int(round(dt / op_conds.period)) + 1, 2)
try:
step_solution = solver.step(
current_solution,
model,
dt,
npts=npts,
save=False,
**kwargs,
)
except pybamm.SolverError as error:
if (
"non-positive at initial conditions" in error.message
and "[experiment]" in error.message
):
step_solution = pybamm.EmptySolution(
"Event exceeded in initial conditions", t=start_time
)
else:
logs["error"] = error
callbacks.on_experiment_error(logs)
feasible = False
# If none of the cycles worked, raise an error
if cycle_num == 1 and step_num == 1:
raise error
# Otherwise, just stop this cycle
break
step_termination = step_solution.termination
# Add a padding rest step if necessary
if getattr(op_conds_unproc, "next_start_time", None) is not None:
rest_time = (
op_conds_unproc.next_start_time
- (
initial_start_time
+ timedelta(seconds=float(step_solution.t[-1]))
)
).total_seconds()
if rest_time > pybamm.settings.step_start_offset:
logs["step number"] = (step_num, cycle_length)
logs["step operating conditions"] = "Rest for padding"
callbacks.on_step_start(logs)
kwargs["inputs"] = {
**user_inputs,
"Ambient temperature [K]": (
op_conds.temperature or self._original_temperature
),
"start time": step_solution.t[-1],
}
step_solution_with_rest = self.run_padding_rest(
kwargs, rest_time, step_solution
)
step_solution += step_solution_with_rest
steps.append(step_solution)
# If there haven't been any successful steps yet in this cycle, then
# carry the solution over from the previous cycle (but
# `step_solution` should still be an EmptySolution so that in the
# list of returned step solutions we can see which steps were
# skipped)
if (
cycle_solution is None
and isinstance(step_solution, pybamm.EmptySolution)
and not isinstance(current_solution, pybamm.EmptySolution)
):
cycle_solution = current_solution.last_state
else:
cycle_solution = cycle_solution + step_solution
current_solution = cycle_solution
callbacks.on_step_end(logs)
logs["termination"] = step_solution.termination
# Only allow events specified by experiment
if not (
isinstance(step_solution, pybamm.EmptySolution)
or step_termination == "final time"
or "[experiment]" in step_termination
):
callbacks.on_experiment_infeasible(logs)
feasible = False
break
# Increment index for next iteration
idx += 1
if save_this_cycle or feasible is False:
self._solution = self._solution + cycle_solution
# At the final step of the inner loop we save the cycle
if len(steps) > 0:
# Check for EmptySolution
if all(isinstance(step, pybamm.EmptySolution) for step in steps):
if len(steps) == 1:
raise pybamm.SolverError(
f"Step '{op_conds_str}' is infeasible "
"due to exceeded bounds at initial conditions. "
"If this step is part of a longer cycle, "
"round brackets should be used to indicate this, "
"e.g.:\n pybamm.Experiment([(\n"
"\tDischarge at C/5 for 10 hours or until 3.3 V,\n"
"\tCharge at 1 A until 4.1 V,\n"
"\tHold at 4.1 V until 10 mA\n"
"])"
)
else:
this_cycle = self.experiment.operating_conditions_cycles[
cycle_num - 1
]
raise pybamm.SolverError(
f"All steps in the cycle {this_cycle} are infeasible "
"due to exceeded bounds at initial conditions."
)
cycle_sol = pybamm.make_cycle_solution(
steps, esoh_solver=esoh_solver, save_this_cycle=save_this_cycle
)
cycle_solution, cycle_sum_vars, cycle_first_state = cycle_sol
all_cycle_solutions.append(cycle_solution)
all_summary_variables.append(cycle_sum_vars)
all_first_states.append(cycle_first_state)
logs["summary variables"] = cycle_sum_vars
# Calculate capacity_start using the first cycle
if cycle_num == 1:
# Note capacity_start could be defined as
# self._parameter_values["Nominal cell capacity [A.h]"] instead
if "capacity" in self.experiment.termination:
capacity_start = all_summary_variables[0]["Capacity [A.h]"]
logs["start capacity"] = capacity_start
value, typ = self.experiment.termination["capacity"]
if typ == "Ah":
capacity_stop = value
elif typ == "%":
capacity_stop = value / 100 * capacity_start
else:
capacity_stop = None
logs["stopping conditions"]["capacity"] = capacity_stop
logs["elapsed time"] = timer.time()
callbacks.on_cycle_end(logs)
# Break if stopping conditions are met
# Logging is done in the callbacks
if capacity_stop is not None:
capacity_now = cycle_sum_vars["Capacity [A.h]"]
if not np.isnan(capacity_now) and capacity_now <= capacity_stop:
break
if voltage_stop is not None:
min_voltage = cycle_sum_vars["Minimum voltage [V]"]
if min_voltage <= voltage_stop[0]:
break
# Break if the experiment is infeasible (or errored)
if feasible is False:
break
if self.solution is not None and len(all_cycle_solutions) > 0:
self.solution.cycles = all_cycle_solutions
self.solution.set_summary_variables(all_summary_variables)
self.solution.all_first_states = all_first_states
callbacks.on_experiment_end(logs)
# record initial_start_time of the solution
self.solution.initial_start_time = initial_start_time
return self.solution
def run_padding_rest(self, kwargs, rest_time, step_solution):
model = self.op_conds_to_built_models["Rest for padding"]
solver = self.op_conds_to_built_solvers["Rest for padding"]
# Make sure we take at least 2 timesteps. The period is hardcoded to 10
# minutes,the user can always override it by adding a rest step
npts = max(int(round(rest_time / 600)) + 1, 2)
step_solution_with_rest = solver.step(
step_solution,
model,
rest_time,
npts=npts,
save=False,
**kwargs,
)
return step_solution_with_rest
def step(
self, dt, solver=None, npts=2, save=True, starting_solution=None, **kwargs
):
"""
A method to step the model forward one timestep. This method will
automatically build and set the model parameters if not already done so.
Parameters
----------
dt : numeric type
The timestep over which to step the solution
solver : :class:`pybamm.BaseSolver`
The solver to use to solve the model.
npts : int, optional
The number of points at which the solution will be returned during
the step dt. Default is 2 (returns the solution at t0 and t0 + dt).
save : bool
Turn on to store the solution of all previous timesteps
starting_solution : :class:`pybamm.Solution`
The solution to start stepping from. If None (default), then self._solution
is used