forked from jax-ml/jax
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet50.py
130 lines (107 loc) · 4.36 KB
/
resnet50.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A mock-up showing a ResNet50 network with training on synthetic data.
This file uses the stax neural network definition library and the minmax
optimization library.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy.random as npr
from six.moves import xrange
import jax.numpy as np
from jax.config import config
from jax import jit, grad
from jax.experimental import minmax
from jax.experimental import stax
from jax.experimental.stax import (AvgPool, BatchNorm, Conv, Dense, FanInSum,
FanOut, Flatten, GeneralConv, Identity,
MaxPool, Relu, LogSoftmax)
# ResNet blocks compose other layers
def ConvBlock(kernel_size, filters, strides=(2, 2)):
ks = kernel_size
filters1, filters2, filters3 = filters
Main = stax.serial(
Conv(filters1, (1, 1), strides), BatchNorm(), Relu,
Conv(filters2, (ks, ks), padding='SAME'), BatchNorm(), Relu,
Conv(filters3, (1, 1)), BatchNorm())
Shortcut = stax.serial(Conv(filters3, (1, 1), strides), BatchNorm())
return stax.serial(FanOut(2), stax.parallel(Main, Shortcut), FanInSum, Relu)
def IdentityBlock(kernel_size, filters):
ks = kernel_size
filters1, filters2 = filters
def make_main(input_shape):
# the number of output channels depends on the number of input channels
return stax.serial(
Conv(filters1, (1, 1)), BatchNorm(), Relu,
Conv(filters2, (ks, ks), padding='SAME'), BatchNorm(), Relu,
Conv(input_shape[3], (1, 1)), BatchNorm())
Main = stax.shape_dependent(make_main)
return stax.serial(FanOut(2), stax.parallel(Main, Identity), FanInSum, Relu)
# ResNet architectures compose layers and ResNet blocks
def ResNet50(num_classes):
return stax.serial(
GeneralConv(('HWCN', 'OIHW', 'NHWC'), 64, (7, 7), (2, 2), 'SAME'),
BatchNorm(), Relu, MaxPool((3, 3), strides=(2, 2)),
ConvBlock(3, [64, 64, 256], strides=(1, 1)),
IdentityBlock(3, [64, 64]),
IdentityBlock(3, [64, 64]),
ConvBlock(3, [128, 128, 512]),
IdentityBlock(3, [128, 128]),
IdentityBlock(3, [128, 128]),
IdentityBlock(3, [128, 128]),
ConvBlock(3, [256, 256, 1024]),
IdentityBlock(3, [256, 256]),
IdentityBlock(3, [256, 256]),
IdentityBlock(3, [256, 256]),
IdentityBlock(3, [256, 256]),
IdentityBlock(3, [256, 256]),
ConvBlock(3, [512, 512, 2048]),
IdentityBlock(3, [512, 512]),
IdentityBlock(3, [512, 512]),
AvgPool((7, 7)), Flatten, Dense(num_classes), LogSoftmax)
if __name__ == "__main__":
batch_size = 8
num_classes = 1001
input_shape = (224, 224, 3, batch_size)
step_size = 0.1
num_steps = 10
init_fun, predict_fun = ResNet50(num_classes)
_, init_params = init_fun(input_shape)
def loss(params, batch):
inputs, targets = batch
logits = predict_fun(params, inputs)
return np.sum(logits * targets)
def accuracy(params, batch):
inputs, targets = batch
target_class = np.argmax(targets, axis=-1)
predicted_class = np.argmax(predict_fun(params, inputs), axis=-1)
return np.mean(predicted_class == target_class)
def synth_batches():
rng = npr.RandomState(0)
while True:
images = rng.rand(*input_shape).astype('float32')
labels = rng.randint(num_classes, size=(batch_size, 1))
onehot_labels = labels == np.arange(num_classes)
yield images, onehot_labels
opt_init, opt_update = minmax.momentum(step_size, mass=0.9)
batches = synth_batches()
@jit
def update(i, opt_state, batch):
params = minmax.get_params(opt_state)
return opt_update(i, grad(loss)(params, batch), opt_state)
opt_state = opt_init(init_params)
for i in xrange(num_steps):
opt_state = update(i, opt_state, next(batches))
trained_params = minmax.get_params(opt_state)