The purpose of this part is to have a ready made vademecum to profile Python code, with no need to google stuff every time.
Tools to measure time spent inside functions, with the procedures to use them.
- Snakeviz
- generate a
.prof
file with the command
python -m cProfile -o p.prof code_profiling_main.py --dim 10000 --loops 4
- in a local machine with access to a browser, simply run
snakeviz p.prof
- if we're working remotely, use the following procedure:
user@remote: snakeviz --server p.prof
user@local: ssh -Y -N -f -L localhost:8080:localhost:8080 user@remote
- in the local browser, paste the link printed by snakeviz on the remote cluster (e.g.
http://127.0.0.1:8080/snakeviz/%2Fwork%2Fgallim%2Fdevel%2FUsefulHEPScripts%2Fprofiling%2Fp.prof
)
- generate a
- line_profiler
- add the decorator
@profile
to the functions we want to profile - run
kernprof -l -v code_profiling_main.py --dim 1000 --loops 4
- add the decorator
- memory_profiler
- decorate functions with
@profile
- run
python -m memory_profiler code_profiling_main.py --dim 1000 --loops 4
(see here for details )
- decorate functions with
- scalene
- references: github repo and tutorial
scalene --outfile output.txt code_profiling_main.py --dim 1000 --loops 4