-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Mayank Sati
committed
May 18, 2020
0 parents
commit 1f4bb69
Showing
102 changed files
with
20,273 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
log | ||
build | ||
install | ||
launch/*cache* | ||
data/* | ||
nohup.out | ||
domain_id | ||
*.idea | ||
*~ | ||
*.pyc | ||
*.pth | ||
*.csv |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
{ | ||
"configurations": [ | ||
{ | ||
"browse": { | ||
"databaseFilename": "", | ||
"limitSymbolsToIncludedHeaders": true | ||
}, | ||
"includePath": [ | ||
"/usr/include/**" | ||
], | ||
"name": "ROS" | ||
} | ||
] | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
{ | ||
"python.autoComplete.extraPaths": [ | ||
"/opt/ros/dashing/lib/python3.6/site-packages" | ||
] | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
,mayank_sati,gwmidclap0045-Precision-7730,05.09.2019 14:21,file:///home/mayank_sati/.config/libreoffice/4; |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2019 Hiromichi Kamata | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
|
||
## QATM:Quality-Aware Template Matching For Deep Learning | ||
arxiv: https://arxiv.org/abs/1903.07254 | ||
original code (tensorflow+keras): https://github.com/cplusx/QATM | ||
|
||
I used code from https://github.com/kamata1729/QATM_pytorch and modified it to | ||
my purpose. | ||
|
||
For base code credit to @https://github.com/kamata1729. | ||
## Dependencies | ||
|
||
* torch(1.0.0) | ||
* torchvision(0.2.1) | ||
* cv2 | ||
* seaborn | ||
* sklearn | ||
* pathlib | ||
|
||
## Installing the right version of PyTorch | ||
This project is updated to be compatible with pytorch 1.0.1 and requires python 3.6 | ||
|
||
|
||
You can find other project requirements in `requirements.txt` , which you can install using `pip install -r requirements.txt` | ||
|
||
|
||
|
||
## Inference | ||
|
||
* Run : inference.py | ||
* For custum datasets : inference_custom.py | ||
|
||
|
||
`template1_1.png` to `template1_4.png` are contained in `sample1.jpg`, however, `template1_dummy.png` is a dummy and not contained | ||
|
||
|template1_1.png|template1_2.png|template1_3.png|template1_4.png|template1_dummy.png| | ||
|---|---|---|---|---| | ||
|||||| | ||
|
||
 | ||
|
||
|
||
# Usage | ||
|
||
See [`qatm_pytorch.ipynb`](https://github.com/kamata1729/QATM_pytorch/blob/master/qatm_pytorch.ipynb) | ||
|
||
or | ||
|
||
|
||
``` | ||
python qatm.py -s sample/sample1.jpg -t template --cuda | ||
``` | ||
|
||
* Add `--cuda` option to use GPU | ||
* Add `-s`/`--sample_image` to specify sample image | ||
**only single** sample image can be specified in this present implementation | ||
* Add `-t`/`--template_images_dir` to specify template image dir | ||
|
||
**[notice]** If neither `-s` nor `-t` is specified, the demo program will be executed, which is the same as: | ||
``` | ||
python qatm.py -s sample/sample1.jpg -t template | ||
``` | ||
|
||
* `--thresh_csv` and `--alpha` option can also be added | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
from __future__ import print_function | ||
import argparse | ||
|
||
import torchvision.datasets as dset | ||
import torchvision.transforms as transforms | ||
from torch.utils.data import DataLoader, Dataset | ||
|
||
import random | ||
from PIL import Image | ||
import torch | ||
|
||
import PIL.ImageOps | ||
import torch.nn as nn | ||
from torch import optim | ||
import torch.nn.functional as F | ||
|
||
|
||
class Net(nn.Module): | ||
def __init__(self): | ||
super(Net, self).__init__() | ||
self.layer1 = nn.Sequential( | ||
nn.Conv2d(3, 8, kernel_size=3, stride=1, padding=2), | ||
nn.ReLU(), | ||
nn.MaxPool2d(kernel_size=2, stride=2), | ||
|
||
nn.Conv2d(8, 16, kernel_size=3, stride=1, padding=2), | ||
nn.ReLU(), | ||
nn.MaxPool2d(kernel_size=2, stride=2), | ||
|
||
nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=2), | ||
nn.ReLU(), | ||
nn.MaxPool2d(kernel_size=2, stride=2)) | ||
|
||
self.fc1 = nn.Linear(5 * 5 * 32, 1000) | ||
# self.fc1 = nn.Linear(800, 1000) | ||
self.fc2 = nn.Linear(1000, 64) | ||
self.fc3 = nn.Linear(64, 4) | ||
|
||
def forward(self, x): | ||
out = self.layer1(x) | ||
# out = self.layer2(out) | ||
out = out.reshape(out.size(0), -1) | ||
# out = self.drop_out(out) | ||
out = F.relu(self.fc1(out)) | ||
out = F.relu(self.fc2(out)) | ||
# out = F.relu(self.fc1(out)) | ||
out = self.fc3(out) | ||
# return out | ||
return F.log_softmax(out, dim=1) | ||
|
||
|
||
def train(args, model, device, train_loader, optimizer, epoch): | ||
model.train() | ||
for batch_idx, (data, target) in enumerate(train_loader): | ||
data, target = data.to(device), target.to(device) | ||
optimizer.zero_grad() | ||
output = model(data) | ||
loss = F.nll_loss(output, target) | ||
loss.backward() | ||
optimizer.step() | ||
if batch_idx % args.log_interval == 0: | ||
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( | ||
epoch, batch_idx * len(data), len(train_loader.dataset), | ||
100. * batch_idx / len(train_loader), loss.item())) | ||
|
||
|
||
# def test(args, model, device, test_loader): | ||
# model.eval() | ||
# test_loss = 0 | ||
# correct = 0 | ||
# with torch.no_grad(): | ||
# for data, target in test_loader: | ||
# data, target = data.to(device), target.to(device) | ||
# output = model(data) | ||
# test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss | ||
# pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability | ||
# correct += pred.eq(target.view_as(pred)).sum().item() | ||
# | ||
# test_loss /= len(test_loader.dataset) | ||
# | ||
# print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( | ||
# test_loss, correct, len(test_loader.dataset), | ||
# 100. * correct / len(test_loader.dataset))) | ||
# | ||
|
||
|
||
class Create_Image_Datasets(Dataset): | ||
|
||
def __init__(self, imageFolderDataset, transform=None, should_invert=True): | ||
self.imageFolderDataset = imageFolderDataset | ||
self.transform = transform | ||
self.should_invert = should_invert | ||
|
||
def __getitem__(self, index): | ||
img0_tuple = random.choice(self.imageFolderDataset.imgs) | ||
# img0_tuple = random.choice(self.imageFolderDataset.samples) | ||
|
||
img0 = Image.open(img0_tuple[0]) | ||
img0 = img0.convert("RGB") | ||
if self.should_invert: | ||
img0 = PIL.ImageOps.invert(img0) | ||
# img1 = PIL.ImageOps.invert(img1) | ||
if self.transform is not None: | ||
img0 = self.transform(img0) | ||
# return img0, img1 , torch.from_numpy(np.array([int(img1_tuple[1]!=img0_tuple[1])],dtype=np.float32)) | ||
label = img0_tuple[1] | ||
return img0, label | ||
|
||
def __len__(self): | ||
return len(self.imageFolderDataset.imgs) | ||
|
||
def main(): | ||
# Training settings | ||
training_dir = "/home/mayank_sati/Desktop/traffic_light/sorting_light/final_sort" | ||
parser = argparse.ArgumentParser(description='PyTorch MNIST Example') | ||
parser.add_argument('--train_dir', type=str, default=training_dir, metavar='N', | ||
help='path for training directory') | ||
parser.add_argument('--batch_size', type=int, default=64, metavar='N', | ||
help='input batch size for training (default: 64)') | ||
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', | ||
help='input batch size for testing (default: 1000)') | ||
parser.add_argument('--epochs', type=int, default=10, metavar='N', | ||
help='number of epochs to train (default: 10)') | ||
parser.add_argument('--lr', type=float, default=0.01, metavar='LR', | ||
help='learning rate (default: 0.01)') | ||
parser.add_argument('--momentum', type=float, default=0.5, metavar='M', | ||
help='SGD momentum (default: 0.5)') | ||
parser.add_argument('--no-cuda', action='store_true', default=False, | ||
help='disables CUDA training') | ||
parser.add_argument('--seed', type=int, default=1, metavar='S', | ||
help='random seed (default: 1)') | ||
parser.add_argument('--log-interval', type=int, default=10, metavar='N', | ||
help='how many batches to wait before logging training status') | ||
|
||
parser.add_argument('--save-model', action='store_true', default=True, | ||
help='For Saving the current Model') | ||
args = parser.parse_args() | ||
|
||
use_cuda = not args.no_cuda and torch.cuda.is_available() | ||
|
||
torch.manual_seed(args.seed) | ||
|
||
device = torch.device("cuda" if use_cuda else "cpu") | ||
|
||
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} | ||
########################################33 | ||
|
||
res = 30 | ||
|
||
train_folder_dataset = dset.ImageFolder(root=args.train_dir) | ||
train_dataset = Create_Image_Datasets(imageFolderDataset=train_folder_dataset, transform=transforms.Compose( | ||
[transforms.Resize((res, res)), transforms.ToTensor()]), should_invert=False) | ||
train_dataloader = DataLoader(train_dataset, shuffle=True, num_workers=4, batch_size=args.batch_size) | ||
|
||
model = Net().to(device) | ||
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) | ||
# optimizer = optim.Adam(model.parameters(), lr=0.1, betas=(0.9, 0.999), eps=1e-08, | ||
# weight_decay=0.0) | ||
|
||
for epoch in range(1, args.epochs + 1): | ||
train(args, model, device, train_dataloader, optimizer, epoch) | ||
# test(args, model, device, test_loader) | ||
|
||
if (args.save_model): | ||
torch.save(model.state_dict(), "color_model.pt") | ||
# torch.save(model.state_dict(), './model-save_dict_color-%s.pt' % epoch) | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
Oops, something went wrong.