-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
executable file
·266 lines (233 loc) · 12.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import argparse
import collections
import copy
import pdb
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn.parallel
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm
from datasets.balanced_sampling import CustomConcatDataset, BalancedRandomSampler
from trainer.mvsformer_trainer import Trainer
from base.parse_config import ConfigParser
from utils import get_lr_schedule_with_warmup, get_parameter_groups, init_model
SEED = 123
torch.manual_seed(SEED)
cudnn.benchmark = True
cudnn.deterministic = False
def main(gpu, args, config):
rank = args.node_rank * args.gpus + gpu
torch.cuda.set_device(gpu)
if args.DDP:
dist.init_process_group(backend='nccl', init_method='env://', world_size=args.world_size, rank=rank, group_name='mtorch')
print('Nodes:', args.nodes, 'Node_rank:', args.node_rank, 'Rank:', rank, 'GPU_id:', gpu)
train_data_loaders, valid_data_loaders = [], []
train_sampler = None
for dl_params in config['data_loader']:
dl_name, dl_args = dl_params['type'], dict(dl_params['args'])
train_dl_args = dl_args.copy()
train_dl_args['listfile'] = dl_args['train_data_list']
train_dl_args['batch_size'] = train_dl_args['batch_size'] // args.world_size
train_dl_args['world_size'] = args.world_size
# set dataname for config
config['arch']['dataset_name'] = dl_name
del train_dl_args['train_data_list'], train_dl_args['val_data_list']
if train_dl_args['multi_scale']:
from datasets.blended_dataset_ms import BlendedMVSDataset
from datasets.dtu_dataset_ms import DTUMVSDataset
cudnn.benchmark = False # benchmark=False is more suitable for the multi-scale training
else:
from datasets.blended_dataset import BlendedMVSDataset
from datasets.dtu_dataset import DTUMVSDataset
if args.balanced_training:
train_dl_args_dtu = copy.deepcopy(train_dl_args)
train_dl_args_dtu['datapath'] = train_dl_args_dtu['dtu_datapath']
train_dl_args_dtu['listfile'] = train_dl_args_dtu['dtu_train_data_list']
train_dataset1 = DTUMVSDataset(**train_dl_args_dtu)
train_dl_args_blended = copy.deepcopy(train_dl_args)
train_dl_args_blended['datapath'] = train_dl_args_blended['blended_datapath']
train_dl_args_blended['listfile'] = train_dl_args_blended['blended_train_data_list']
train_dataset2 = BlendedMVSDataset(**train_dl_args_blended)
train_dataset = CustomConcatDataset([train_dataset1, train_dataset2])
train_sampler = BalancedRandomSampler(train_dataset, num_replicas=args.world_size, rank=rank, shuffle=True)
else:
if dl_name == 'BlendedLoader':
train_dataset = BlendedMVSDataset(**train_dl_args)
else:
train_dataset = DTUMVSDataset(**train_dl_args)
train_sampler = DistributedSampler(train_dataset, num_replicas=args.world_size, rank=rank, shuffle=True)
train_loader = DataLoader(train_dataset, shuffle=False, pin_memory=True, batch_size=train_dl_args['batch_size'],
num_workers=train_dl_args['num_workers'], sampler=train_sampler, drop_last=True) # train_dl_args['num_workers']
train_data_loaders.append(train_loader)
# setup valid_data_loader instances
val_kwags = {
"listfile": dl_args['val_data_list'],
"mode": "val",
"nviews": 5,
"shuffle": False,
"batch_size": 4,
"random_crop": False
}
val_dl_args = train_dl_args.copy()
val_dl_args.update(val_kwags)
if dl_name == 'BlendedLoader':
val_dataset = BlendedMVSDataset(**val_dl_args)
else:
val_dataset = DTUMVSDataset(**val_dl_args)
val_sampler = DistributedSampler(val_dataset, num_replicas=args.world_size, rank=rank, shuffle=False)
# 根据测试图片尺度评估batchsize
eval_batch = train_dl_args['batch_size']
if dl_args['width'] > 1024:
eval_batch = 2
if dl_args['width'] > 1536:
eval_batch = 1
val_data_loader = DataLoader(val_dataset, shuffle=False, pin_memory=True, batch_size=eval_batch, num_workers=4, sampler=val_sampler)
valid_data_loaders.append(val_data_loader)
if args.balanced_training:
val_dl_args2 = copy.deepcopy(val_dl_args)
if dl_name == 'BlendedLoader':
val_dl_args2['datapath'] = val_dl_args2['dtu_datapath']
val_dl_args2['listfile'] = val_dl_args2['dtu_val_data_list']
val_dl_args2['height'] = 1152
val_dl_args2['width'] = 1536
val_dataset2 = DTUMVSDataset(**val_dl_args2)
config['data_loader'].append({"type": "DTULoader"})
else:
val_dl_args2['datapath'] = val_dl_args2['blended_datapath']
val_dl_args2['listfile'] = val_dl_args2['blended_val_data_list']
val_dl_args2['height'] = 1536
val_dl_args2['width'] = 2048
val_dataset2 = BlendedMVSDataset(**val_dl_args2)
config['data_loader'].append({"type": "BlendedLoader"})
val_sampler2 = DistributedSampler(val_dataset2, num_replicas=args.world_size, rank=rank, shuffle=False)
val_data_loader2 = DataLoader(val_dataset2, shuffle=False, pin_memory=True, batch_size=eval_batch, num_workers=4, sampler=val_sampler2)
valid_data_loaders.append(val_data_loader2)
break
# build models architecture, then print to console
model = init_model(config)
# build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler
opt_args = config['optimizer']['args']
# build optimizer with layer-wise lr decay (lrd)
if not config['arch']['args'].get('freeze_vit', True):
for k,v in model.named_parameters():
if k.startswith("vit."):
v.requires_grad = True
if k == 'vit.mask_token':
v.requires_grad = False
param_groups = get_parameter_groups(opt_args, model, freeze_vit=config['arch']['args'].get('freeze_vit', None))
optimizer = torch.optim.AdamW(param_groups, lr=opt_args['lr'], weight_decay=opt_args['weight_decay'])
lr_scheduler = get_lr_schedule_with_warmup(optimizer, num_warmup_steps=opt_args['warmup_steps'], min_lr=opt_args['min_lr'],
total_steps=len(train_data_loaders[0]) * config['trainer']['epochs'])
writer = SummaryWriter(config.log_dir)
model.cuda(gpu)
is_finetune = config['arch'].get('finetune', False)
reset_sche = config['arch'].get('reset_sche', True)
if is_finetune:
restore_path = config['arch']['dtu_model_path']
checkpoint = torch.load(restore_path, map_location='cpu')
if rank == 0:
print('Load Model from', restore_path, 'Rank:', rank, 'Epoch:{}'.format(checkpoint['epoch']))
state_dict = {}
for k, v in checkpoint['state_dict'].items():
if "pe_dict" in k:
continue
k_ = k[7:] if k.startswith('module.') else k
state_dict[k_] = v
model.load_state_dict(state_dict, strict=True)
optimizer.load_state_dict(checkpoint['optimizer'])
if not reset_sche:
start_epoch = checkpoint['epoch'] + 1
print('Start from epoch', start_epoch)
for _ in tqdm(range(checkpoint['epoch'] * len(train_data_loaders[0])), disable=True if rank != 0 else False):
lr_scheduler.step()
else:
start_epoch = 1
for pg in optimizer.param_groups: # reset initial lr
if 'vit_param' in pg and pg['vit_param']:
pg['lr'] = opt_args['vit_lr']
pg['initial_lr'] = opt_args['vit_lr']
else:
pg['lr'] = opt_args['lr']
pg['initial_lr'] = opt_args['lr']
else:
start_epoch = 1
if args.resume is not None:
checkpoint = torch.load(args.resume, map_location='cpu')
if rank == 0:
print('Load Model from', args.resume, 'Rank:', rank, 'Epoch:{}'.format(checkpoint['epoch']))
state_dict = {}
for k, v in checkpoint['state_dict'].items():
k_ = k[7:] if k.startswith('module.') else k
state_dict[k_] = v
# state_dict[k.replace('module.', '')] = v
model.load_state_dict(state_dict, strict=True)
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch'] + 1
print('Start from epoch', start_epoch)
for _ in tqdm(range(checkpoint['epoch'] * len(train_data_loaders[0])), disable=True if rank != 0 else False):
lr_scheduler.step()
if args.DDP:
if rank == 0:
print("Let's use", torch.cuda.device_count(), "GPUs!")
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[gpu], output_device=gpu, find_unused_parameters=False)
trainer = Trainer(model, optimizer, config=config, data_loader=train_data_loaders, ddp=args.DDP,
valid_data_loader=valid_data_loaders, lr_scheduler=lr_scheduler, writer=writer, rank=rank,
train_sampler=train_sampler, debug=args.debug)
trainer.start_epoch = start_epoch
trainer.train()
if __name__ == '__main__':
args = argparse.ArgumentParser(description='PyTorch Template')
args.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
args.add_argument('-e', '--exp_name', default=None, type=str)
args.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
args.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
args.add_argument('--dataloader_type', default=None, type=str, help='BlendedMVS or DTU')
args.add_argument('--finetune', action='store_true', help='BlendedMVS or DTU')
args.add_argument('--data_path', default=None, type=str, help='data set root path')
args.add_argument('--dtu_model_path', default=None, type=str, help='MVS model trained on DTU')
args.add_argument('--nodes', type=int, default=1, help='how many machines')
args.add_argument('--node_rank', type=int, default=0, help='the id of this machine')
args.add_argument('--DDP', action='store_true', help='DDP')
args.add_argument('--balanced_training', action='store_true', help='train with balanced DTU and blendedmvs, '
'use the less one to decide the epoch iterations')
args.add_argument('--debug', action='store_true', help='slow down the training, but can check fp16 overflow')
# custom cli options to modify configuration from default values given in json file.
CustomArgs = collections.namedtuple('CustomArgs', 'flags type target')
options = [
CustomArgs(['--lr', '--learning_rate'], type=float, target='optimizer;args;lr'),
CustomArgs(['--bs', '--batch_size'], type=int, target='data_loader;args;batch_size')
]
config = ConfigParser.from_args(args, options)
args = args.parse_args()
import os
ngpu = torch.cuda.device_count()
args.gpus = ngpu
if args.DDP:
args.world_size = args.nodes * args.gpus
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '1122'
else:
args.world_size = 1
if args.dataloader_type is not None:
config['data_loader'][0]['type'] = args.dataloader_type
if args.dataloader_type == 'BlendedLoader':
config['data_loader'][0]['args']['train_data_list'] = "lists/blended/training_list.txt"
config['data_loader'][0]['args']['val_data_list'] = "lists/blended/validation_list.txt"
# set data path
if args.data_path is not None:
config['data_loader'][0]['args']['datapath'] = args.data_path
if args.dtu_model_path is not None:
config['arch']['dtu_model_path'] = args.dtu_model_path
if args.finetune is True:
config['arch']['finetune'] = True
os.environ['TORCH_DISTRIBUTED_DEBUG'] = 'INFO'
mp.spawn(main, nprocs=args.world_size, args=(args, config))
# main(0, args, config)