forked from ronekko/deep_metric_learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple_convnet.py
83 lines (72 loc) · 2.5 KB
/
simple_convnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# -*- coding: utf-8 -*-
"""
Created on Fri Apr 21 19:44:37 2017
@author: sakurai
"""
import chainer
import chainer.functions as F
import chainer.links as L
class SimpleConvnet(chainer.Chain):
def __init__(self, out_dim):
super(SimpleConvnet, self).__init__(
conv1=L.Convolution2D(3, 50, 3),
bn_conv1=L.BatchNormalization(50),
conv21=L.Convolution2D(50, 100, 3),
bn_conv21=L.BatchNormalization(100),
conv22=L.Convolution2D(100, 100, 1),
bn_conv22=L.BatchNormalization(100),
conv31=L.Convolution2D(100, 200, 3),
bn_conv31=L.BatchNormalization(200),
conv32=L.Convolution2D(200, 200, 3),
bn_conv32=L.BatchNormalization(200),
conv41=L.Convolution2D(200, 400, 3),
bn_conv41=L.BatchNormalization(400),
conv42=L.Convolution2D(400, 400, 1),
bn_conv42=L.BatchNormalization(400),
conv5=L.Convolution2D(400, 400, 1),
bn_conv5=L.BatchNormalization(400),
conv6=L.Convolution2D(400, 400, 1),
bn_conv6=L.BatchNormalization(400),
linear1=L.Linear(400, 400),
bn_linear1=L.BatchNormalization(400),
linear2=L.Linear(400, out_dim)
)
def __call__(self, x, train=False):
h = self.conv1(x)
h = self.bn_conv1(h, test=not train)
h = F.max_pooling_2d(h, 2)
h = F.relu(h)
h = self.conv21(h)
h = self.bn_conv21(h, test=not train)
h = F.relu(h)
h = self.conv22(h)
h = self.bn_conv22(h, test=not train)
h = F.max_pooling_2d(h, 2)
h = F.relu(h)
h = self.conv31(h)
h = self.bn_conv31(h, test=not train)
h = F.relu(h)
h = self.conv32(h)
h = self.bn_conv32(h, test=not train)
h = F.max_pooling_2d(h, 2)
h = F.relu(h)
h = self.conv41(h)
h = self.bn_conv41(h, test=not train)
h = F.relu(h)
h = self.conv42(h)
h = self.bn_conv42(h, test=not train)
h = F.max_pooling_2d(h, 2)
h = F.relu(h)
h = self.conv5(h)
h = self.bn_conv5(h, test=not train)
h = F.relu(h)
h = self.conv6(h)
h = self.bn_conv6(h, test=not train)
h = F.relu(h)
h = F.average_pooling_2d(h, h.shape[2:])
h = self.linear1(h)
h = self.bn_linear1(h, test=not train)
# h = F.dropout(h, ratio=0.5, train=train)
h = F.relu(h)
h = self.linear2(h)
return h