Skip to content

mbaddoo/vcfstats

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

vcfstats

Powerful statistics for VCF files

Documentation

Installation

vcfstats also requires R with ggplot2 to be installed. If you are doing pie chart, ggrepel is also required.

pip install vcfstats

Gallery

Number of variants on each chromosome

vcfstats --vcf examples/sample.vcf \
	--outdir examples/ \
	--formula 'COUNT(1) ~ CONTIG' \
	--title 'Number of variants on each chromosome' \
	--config examples/config.toml

Number of variants on each chromosome

Changing labels and ticks

vcfstats --vcf examples/sample.vcf \
	--outdir examples/ \
	--formula 'COUNT(1) ~ CONTIG' \
	--title 'Number of variants on each chromosome (modified)' \
	--config examples/config.toml \
	--ggs 'scale_x_discrete(name ="Chromosome", \
		limits=c("1","2","3","4","5","6","7","8","9","10","X")) + \
		ylab("# Variants")'

Number of variants on each chromosome (modified)

Number of variants on first 5 chromosome

vcfstats --vcf examples/sample.vcf \
	--outdir examples/ \
	--formula 'COUNT(1) ~ CONTIG[1,2,3,4,5]' \
	--title 'Number of variants on each chromosome (first 5)' \
	--config examples/config.toml
# or
vcfstats --vcf examples/sample.vcf \
	--outdir examples/ \
	--formula 'COUNT(1) ~ CONTIG[1-5]' \
	--title 'Number of variants on each chromosome (first 5)' \
	--config examples/config.toml
# or
# require vcf file to be tabix-indexed.
vcfstats --vcf examples/sample.vcf \
	--outdir examples/ \
	--formula 'COUNT(1) ~ CONTIG' \
	--title 'Number of variants on each chromosome (first 5)' \
	--config examples/config.toml -r 1 2 3 4 5

Number of variants on each chromosome (first 5)

Number of substitutions of SNPs

vcfstats --vcf examples/sample.vcf \
	--outdir examples/ \
	--formula 'COUNT(1, VARTYPE[snp]) ~ SUBST[A>T,A>G,A>C,T>A,T>G,T>C,G>A,G>T,G>C,C>A,C>T,C>G]' \
	--title 'Number of substitutions of SNPs' \
	--config examples/config.toml

Number of substitutions of SNPs

Only with SNPs PASS all filters

vcfstats --vcf examples/sample.vcf \
	--outdir examples/ \
	--formula 'COUNT(1, VARTYPE[snp]) ~ SUBST[A>T,A>G,A>C,T>A,T>G,T>C,G>A,G>T,G>C,C>A,C>T,C>G]' \
	--title 'Number of substitutions of SNPs (passed)' \
	--config examples/config.toml \
	--passed

Number of substitutions of SNPs (passed)

Alternative allele frequency on each chromosome

# using a dark theme
vcfstats --vcf examples/sample.vcf \
	--outdir examples/ \
	--formula 'AAF ~ CONTIG' \
	--title 'Allele frequency on each chromosome' \
	--config examples/config.toml --ggs 'theme_dark()'

Allele frequency on each chromosome

Using boxplot

vcfstats --vcf examples/sample.vcf \
	--outdir examples/ \
	--formula 'AAF ~ CONTIG' \
	--title 'Allele frequency on each chromosome (boxplot)' \
	--config examples/config.toml \
	--figtype boxplot

Allele frequency on each chromosome

Using density plot/histogram to investigate the distribution:

You can plot the distribution, using density plot or histogram

vcfstats --vcf examples/sample.vcf \
	--outdir examples/ \
	--formula 'AAF ~ CONTIG[1,2]' \
	--title 'Allele frequency on chromosome 1,2' \
	--config examples/config.toml \
	--figtype density

Allele frequency on chromosome 1,2

Overall distribution of allele frequency

vcfstats --vcf examples/sample.vcf \
	--outdir examples/ \
	--formula 'AAF ~ 1' \
	--title 'Overall allele frequency distribution' \
	--config examples/config.toml

Overall allele frequency distribution

Excluding some low/high frequency variants

vcfstats --vcf examples/sample.vcf \
	--outdir examples/ \
	--formula 'AAF[0.05, 0.95] ~ 1' \
	--title 'Overall allele frequency distribution (0.05-0.95)' \
	--config examples/config.toml

Overall allele frequency distribution

Counting types of variants on each chromosome

vcfstats --vcf examples/sample.vcf \
	--outdir examples/ \
	--formula 'COUNT(1, group=VARTYPE) ~ CHROM' \
	--title 'Types of variants on each chromosome' \
	--config examples/config.toml

Types of variants on each chromosome

Using pie chart if there is only one chromosome

vcfstats --vcf examples/sample.vcf \
	--outdir examples/ \
	--formula 'COUNT(1, group=VARTYPE) ~ CHROM[1]' \
	--title 'Types of variants on each chromosome 1' \
	--config examples/config.toml \
	--figtype pie

Types of variants on each chromosome 1

Counting variant types on whole genome

vcfstats --vcf examples/sample.vcf \
	--outdir examples/ \
	--formula 'COUNT(1, group=VARTYPE) ~ 1' \
	--title 'Types of variants on whole genome' \
	--config examples/config.toml

Types of variants on whole genome

Counting type of mutant genotypes (HET, HOM_ALT) for sample 1 on each chromosome

vcfstats --vcf examples/sample.vcf \
	--outdir examples/ \
	--formula 'COUNT(1, group=GTTYPEs[HET,HOM_ALT]{0}) ~ CHROM' \
	--title 'Mutant genotypes on each chromosome (sample 1)' \
	--config examples/config.toml

Mutant genotypes on each chromosome

Exploration of mean(genotype quality) and mean(depth) on each chromosome for sample 1

vcfstats --vcf examples/sample.vcf \
	--outdir examples/ \
	--formula 'MEAN(GQs{0}) ~ MEAN(DEPTHs{0}, group=CHROM)' \
	--title 'GQ vs depth (sample 1)' \
	--config examples/config.toml

GQ vs depth (sample 1)

Exploration of depths for sample 1,2

vcfstats --vcf examples/sample.vcf \
	--outdir examples/ \
	--formula 'DEPTH{0} ~ DEPTH{1}' \
	--title 'Depths between sample 1 and 2' \
	--config examples/config.toml

Depths between sample 1 and 2

About

Powerful statistics for VCF files

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 89.6%
  • Makefile 9.5%
  • Dockerfile 0.9%