forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_transformed_target.py
239 lines (203 loc) · 7.67 KB
/
plot_transformed_target.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# -*- coding: utf-8 -*-
"""
======================================================
Effect of transforming the targets in regression model
======================================================
In this example, we give an overview of
:class:`~sklearn.compose.TransformedTargetRegressor`. We use two examples
to illustrate the benefit of transforming the targets before learning a linear
regression model. The first example uses synthetic data while the second
example is based on the Ames housing data set.
"""
# Author: Guillaume Lemaitre <[email protected]>
# License: BSD 3 clause
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from sklearn.linear_model import RidgeCV
from sklearn.compose import TransformedTargetRegressor
from sklearn.metrics import median_absolute_error, r2_score
# %%
# Synthetic example
##############################################################################
# %%
# A synthetic random regression dataset is generated. The targets ``y`` are
# modified by:
#
# 1. translating all targets such that all entries are
# non-negative (by adding the absolute value of the lowest ``y``) and
# 2. applying an exponential function to obtain non-linear
# targets which cannot be fitted using a simple linear model.
#
# Therefore, a logarithmic (`np.log1p`) and an exponential function
# (`np.expm1`) will be used to transform the targets before training a linear
# regression model and using it for prediction.
X, y = make_regression(n_samples=10000, noise=100, random_state=0)
y = np.expm1((y + abs(y.min())) / 200)
y_trans = np.log1p(y)
# %%
# Below we plot the probability density functions of the target
# before and after applying the logarithmic functions.
f, (ax0, ax1) = plt.subplots(1, 2)
ax0.hist(y, bins=100, density=True)
ax0.set_xlim([0, 2000])
ax0.set_ylabel("Probability")
ax0.set_xlabel("Target")
ax0.set_title("Target distribution")
ax1.hist(y_trans, bins=100, density=True)
ax1.set_ylabel("Probability")
ax1.set_xlabel("Target")
ax1.set_title("Transformed target distribution")
f.suptitle("Synthetic data", y=0.06, x=0.53)
f.tight_layout(rect=[0.05, 0.05, 0.95, 0.95])
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
# %%
# At first, a linear model will be applied on the original targets. Due to the
# non-linearity, the model trained will not be precise during
# prediction. Subsequently, a logarithmic function is used to linearize the
# targets, allowing better prediction even with a similar linear model as
# reported by the median absolute error (MAE).
f, (ax0, ax1) = plt.subplots(1, 2, sharey=True)
# Use linear model
regr = RidgeCV()
regr.fit(X_train, y_train)
y_pred = regr.predict(X_test)
# Plot results
ax0.scatter(y_test, y_pred)
ax0.plot([0, 2000], [0, 2000], "--k")
ax0.set_ylabel("Target predicted")
ax0.set_xlabel("True Target")
ax0.set_title("Ridge regression \n without target transformation")
ax0.text(
100,
1750,
r"$R^2$=%.2f, MAE=%.2f"
% (r2_score(y_test, y_pred), median_absolute_error(y_test, y_pred)),
)
ax0.set_xlim([0, 2000])
ax0.set_ylim([0, 2000])
# Transform targets and use same linear model
regr_trans = TransformedTargetRegressor(
regressor=RidgeCV(), func=np.log1p, inverse_func=np.expm1
)
regr_trans.fit(X_train, y_train)
y_pred = regr_trans.predict(X_test)
ax1.scatter(y_test, y_pred)
ax1.plot([0, 2000], [0, 2000], "--k")
ax1.set_ylabel("Target predicted")
ax1.set_xlabel("True Target")
ax1.set_title("Ridge regression \n with target transformation")
ax1.text(
100,
1750,
r"$R^2$=%.2f, MAE=%.2f"
% (r2_score(y_test, y_pred), median_absolute_error(y_test, y_pred)),
)
ax1.set_xlim([0, 2000])
ax1.set_ylim([0, 2000])
f.suptitle("Synthetic data", y=0.035)
f.tight_layout(rect=[0.05, 0.05, 0.95, 0.95])
# %%
# Real-world data set
###############################################################################
#
# In a similar manner, the Ames housing data set is used to show the impact
# of transforming the targets before learning a model. In this example, the
# target to be predicted is the selling price of each house.
from sklearn.datasets import fetch_openml
from sklearn.preprocessing import QuantileTransformer, quantile_transform
ames = fetch_openml(name="house_prices", as_frame=True, parser="pandas")
# Keep only numeric columns
X = ames.data.select_dtypes(np.number)
# Remove columns with NaN or Inf values
X = X.drop(columns=["LotFrontage", "GarageYrBlt", "MasVnrArea"])
y = ames.target
y_trans = quantile_transform(
y.to_frame(), n_quantiles=900, output_distribution="normal", copy=True
).squeeze()
# %%
# A :class:`~sklearn.preprocessing.QuantileTransformer` is used to normalize
# the target distribution before applying a
# :class:`~sklearn.linear_model.RidgeCV` model.
f, (ax0, ax1) = plt.subplots(1, 2)
ax0.hist(y, bins=100, density=True)
ax0.set_ylabel("Probability")
ax0.set_xlabel("Target")
ax0.text(s="Target distribution", x=1.2e5, y=9.8e-6, fontsize=12)
ax0.ticklabel_format(axis="both", style="sci", scilimits=(0, 0))
ax1.hist(y_trans, bins=100, density=True)
ax1.set_ylabel("Probability")
ax1.set_xlabel("Target")
ax1.text(s="Transformed target distribution", x=-6.8, y=0.479, fontsize=12)
f.suptitle("Ames housing data: selling price", y=0.04)
f.tight_layout(rect=[0.05, 0.05, 0.95, 0.95])
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
# %%
# The effect of the transformer is weaker than on the synthetic data. However,
# the transformation results in an increase in :math:`R^2` and large decrease
# of the MAE. The residual plot (predicted target - true target vs predicted
# target) without target transformation takes on a curved, 'reverse smile'
# shape due to residual values that vary depending on the value of predicted
# target. With target transformation, the shape is more linear indicating
# better model fit.
f, (ax0, ax1) = plt.subplots(2, 2, sharey="row", figsize=(6.5, 8))
regr = RidgeCV()
regr.fit(X_train, y_train)
y_pred = regr.predict(X_test)
ax0[0].scatter(y_pred, y_test, s=8)
ax0[0].plot([0, 7e5], [0, 7e5], "--k")
ax0[0].set_ylabel("True target")
ax0[0].set_xlabel("Predicted target")
ax0[0].text(
s="Ridge regression \n without target transformation",
x=-5e4,
y=8e5,
fontsize=12,
multialignment="center",
)
ax0[0].text(
3e4,
64e4,
r"$R^2$=%.2f, MAE=%.2f"
% (r2_score(y_test, y_pred), median_absolute_error(y_test, y_pred)),
)
ax0[0].set_xlim([0, 7e5])
ax0[0].set_ylim([0, 7e5])
ax0[0].ticklabel_format(axis="both", style="sci", scilimits=(0, 0))
ax1[0].scatter(y_pred, (y_pred - y_test), s=8)
ax1[0].set_ylabel("Residual")
ax1[0].set_xlabel("Predicted target")
ax1[0].ticklabel_format(axis="both", style="sci", scilimits=(0, 0))
regr_trans = TransformedTargetRegressor(
regressor=RidgeCV(),
transformer=QuantileTransformer(n_quantiles=900, output_distribution="normal"),
)
regr_trans.fit(X_train, y_train)
y_pred = regr_trans.predict(X_test)
ax0[1].scatter(y_pred, y_test, s=8)
ax0[1].plot([0, 7e5], [0, 7e5], "--k")
ax0[1].set_ylabel("True target")
ax0[1].set_xlabel("Predicted target")
ax0[1].text(
s="Ridge regression \n with target transformation",
x=-5e4,
y=8e5,
fontsize=12,
multialignment="center",
)
ax0[1].text(
3e4,
64e4,
r"$R^2$=%.2f, MAE=%.2f"
% (r2_score(y_test, y_pred), median_absolute_error(y_test, y_pred)),
)
ax0[1].set_xlim([0, 7e5])
ax0[1].set_ylim([0, 7e5])
ax0[1].ticklabel_format(axis="both", style="sci", scilimits=(0, 0))
ax1[1].scatter(y_pred, (y_pred - y_test), s=8)
ax1[1].set_ylabel("Residual")
ax1[1].set_xlabel("Predicted target")
ax1[1].ticklabel_format(axis="both", style="sci", scilimits=(0, 0))
f.suptitle("Ames housing data: selling price", y=0.035)
plt.show()