forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_stack_predictors.py
278 lines (227 loc) · 8.74 KB
/
plot_stack_predictors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
"""
=================================
Combine predictors using stacking
=================================
.. currentmodule:: sklearn
Stacking refers to a method to blend estimators. In this strategy, some
estimators are individually fitted on some training data while a final
estimator is trained using the stacked predictions of these base estimators.
In this example, we illustrate the use case in which different regressors are
stacked together and a final linear penalized regressor is used to output the
prediction. We compare the performance of each individual regressor with the
stacking strategy. Stacking slightly improves the overall performance.
"""
# Authors: Guillaume Lemaitre <[email protected]>
# Maria Telenczuk <https://github.com/maikia>
# License: BSD 3 clause
# %%
# Download the dataset
##############################################################################
#
# We will use `Ames Housing`_ dataset which was first compiled by Dean De Cock
# and became better known after it was used in Kaggle challenge. It is a set
# of 1460 residential homes in Ames, Iowa, each described by 80 features. We
# will use it to predict the final logarithmic price of the houses. In this
# example we will use only 20 most interesting features chosen using
# GradientBoostingRegressor() and limit number of entries (here we won't go
# into the details on how to select the most interesting features).
#
# The Ames housing dataset is not shipped with scikit-learn and therefore we
# will fetch it from `OpenML`_.
#
# .. _`Ames Housing`: http://jse.amstat.org/v19n3/decock.pdf
# .. _`OpenML`: https://www.openml.org/d/42165
import numpy as np
from sklearn.datasets import fetch_openml
from sklearn.utils import shuffle
def load_ames_housing():
df = fetch_openml(name="house_prices", as_frame=True, parser="pandas")
X = df.data
y = df.target
features = [
"YrSold",
"HeatingQC",
"Street",
"YearRemodAdd",
"Heating",
"MasVnrType",
"BsmtUnfSF",
"Foundation",
"MasVnrArea",
"MSSubClass",
"ExterQual",
"Condition2",
"GarageCars",
"GarageType",
"OverallQual",
"TotalBsmtSF",
"BsmtFinSF1",
"HouseStyle",
"MiscFeature",
"MoSold",
]
X = X[features]
X, y = shuffle(X, y, random_state=0)
X = X[:600]
y = y[:600]
return X, np.log(y)
X, y = load_ames_housing()
# %%
# Make pipeline to preprocess the data
##############################################################################
#
# Before we can use Ames dataset we still need to do some preprocessing.
# First, we will select the categorical and numerical columns of the dataset to
# construct the first step of the pipeline.
from sklearn.compose import make_column_selector
cat_selector = make_column_selector(dtype_include=object)
num_selector = make_column_selector(dtype_include=np.number)
cat_selector(X)
# %%
num_selector(X)
# %%
# Then, we will need to design preprocessing pipelines which depends on the
# ending regressor. If the ending regressor is a linear model, one needs to
# one-hot encode the categories. If the ending regressor is a tree-based model
# an ordinal encoder will be sufficient. Besides, numerical values need to be
# standardized for a linear model while the raw numerical data can be treated
# as is by a tree-based model. However, both models need an imputer to
# handle missing values.
#
# We will first design the pipeline required for the tree-based models.
from sklearn.compose import make_column_transformer
from sklearn.impute import SimpleImputer
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import OrdinalEncoder
cat_tree_processor = OrdinalEncoder(
handle_unknown="use_encoded_value",
unknown_value=-1,
encoded_missing_value=-2,
)
num_tree_processor = SimpleImputer(strategy="mean", add_indicator=True)
tree_preprocessor = make_column_transformer(
(num_tree_processor, num_selector), (cat_tree_processor, cat_selector)
)
tree_preprocessor
# %%
# Then, we will now define the preprocessor used when the ending regressor
# is a linear model.
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import StandardScaler
cat_linear_processor = OneHotEncoder(handle_unknown="ignore")
num_linear_processor = make_pipeline(
StandardScaler(), SimpleImputer(strategy="mean", add_indicator=True)
)
linear_preprocessor = make_column_transformer(
(num_linear_processor, num_selector), (cat_linear_processor, cat_selector)
)
linear_preprocessor
# %%
# Stack of predictors on a single data set
##############################################################################
#
# It is sometimes tedious to find the model which will best perform on a given
# dataset. Stacking provide an alternative by combining the outputs of several
# learners, without the need to choose a model specifically. The performance of
# stacking is usually close to the best model and sometimes it can outperform
# the prediction performance of each individual model.
#
# Here, we combine 3 learners (linear and non-linear) and use a ridge regressor
# to combine their outputs together.
#
# .. note::
# Although we will make new pipelines with the processors which we wrote in
# the previous section for the 3 learners, the final estimator
# :class:`~sklearn.linear_model.RidgeCV()` does not need preprocessing of
# the data as it will be fed with the already preprocessed output from the 3
# learners.
from sklearn.linear_model import LassoCV
lasso_pipeline = make_pipeline(linear_preprocessor, LassoCV())
lasso_pipeline
# %%
from sklearn.ensemble import RandomForestRegressor
rf_pipeline = make_pipeline(tree_preprocessor, RandomForestRegressor(random_state=42))
rf_pipeline
# %%
from sklearn.ensemble import HistGradientBoostingRegressor
gbdt_pipeline = make_pipeline(
tree_preprocessor, HistGradientBoostingRegressor(random_state=0)
)
gbdt_pipeline
# %%
from sklearn.ensemble import StackingRegressor
from sklearn.linear_model import RidgeCV
estimators = [
("Random Forest", rf_pipeline),
("Lasso", lasso_pipeline),
("Gradient Boosting", gbdt_pipeline),
]
stacking_regressor = StackingRegressor(estimators=estimators, final_estimator=RidgeCV())
stacking_regressor
# %%
# Measure and plot the results
##############################################################################
#
# Now we can use Ames Housing dataset to make the predictions. We check the
# performance of each individual predictor as well as of the stack of the
# regressors.
#
# The function ``plot_regression_results`` is used to plot the predicted and
# true targets.
import time
import matplotlib.pyplot as plt
from sklearn.model_selection import cross_validate, cross_val_predict
def plot_regression_results(ax, y_true, y_pred, title, scores, elapsed_time):
"""Scatter plot of the predicted vs true targets."""
ax.plot(
[y_true.min(), y_true.max()], [y_true.min(), y_true.max()], "--r", linewidth=2
)
ax.scatter(y_true, y_pred, alpha=0.2)
ax.spines["top"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.get_xaxis().tick_bottom()
ax.get_yaxis().tick_left()
ax.spines["left"].set_position(("outward", 10))
ax.spines["bottom"].set_position(("outward", 10))
ax.set_xlim([y_true.min(), y_true.max()])
ax.set_ylim([y_true.min(), y_true.max()])
ax.set_xlabel("Measured")
ax.set_ylabel("Predicted")
extra = plt.Rectangle(
(0, 0), 0, 0, fc="w", fill=False, edgecolor="none", linewidth=0
)
ax.legend([extra], [scores], loc="upper left")
title = title + "\n Evaluation in {:.2f} seconds".format(elapsed_time)
ax.set_title(title)
fig, axs = plt.subplots(2, 2, figsize=(9, 7))
axs = np.ravel(axs)
for ax, (name, est) in zip(
axs, estimators + [("Stacking Regressor", stacking_regressor)]
):
start_time = time.time()
score = cross_validate(
est, X, y, scoring=["r2", "neg_mean_absolute_error"], n_jobs=2, verbose=0
)
elapsed_time = time.time() - start_time
y_pred = cross_val_predict(est, X, y, n_jobs=2, verbose=0)
plot_regression_results(
ax,
y,
y_pred,
name,
(r"$R^2={:.2f} \pm {:.2f}$" + "\n" + r"$MAE={:.2f} \pm {:.2f}$").format(
np.mean(score["test_r2"]),
np.std(score["test_r2"]),
-np.mean(score["test_neg_mean_absolute_error"]),
np.std(score["test_neg_mean_absolute_error"]),
),
elapsed_time,
)
plt.suptitle("Single predictors versus stacked predictors")
plt.tight_layout()
plt.subplots_adjust(top=0.9)
plt.show()
# %%
# The stacked regressor will combine the strengths of the different regressors.
# However, we also see that training the stacked regressor is much more
# computationally expensive.