forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_quantile_regression.py
309 lines (274 loc) · 11 KB
/
plot_quantile_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
"""
===================
Quantile regression
===================
This example illustrates how quantile regression can predict non-trivial
conditional quantiles.
The left figure shows the case when the error distribution is normal,
but has non-constant variance, i.e. with heteroscedasticity.
The right figure shows an example of an asymmetric error distribution,
namely the Pareto distribution.
"""
# Authors: David Dale <[email protected]>
# Christian Lorentzen <[email protected]>
# Guillaume Lemaitre <[email protected]>
# License: BSD 3 clause
# %%
# Dataset generation
# ------------------
#
# To illustrate the behaviour of quantile regression, we will generate two
# synthetic datasets. The true generative random processes for both datasets
# will be composed by the same expected value with a linear relationship with a
# single feature `x`.
import numpy as np
rng = np.random.RandomState(42)
x = np.linspace(start=0, stop=10, num=100)
X = x[:, np.newaxis]
y_true_mean = 10 + 0.5 * x
# %%
# We will create two subsequent problems by changing the distribution of the
# target `y` while keeping the same expected value:
#
# - in the first case, a heteroscedastic Normal noise is added;
# - in the second case, an asymmetric Pareto noise is added.
y_normal = y_true_mean + rng.normal(loc=0, scale=0.5 + 0.5 * x, size=x.shape[0])
a = 5
y_pareto = y_true_mean + 10 * (rng.pareto(a, size=x.shape[0]) - 1 / (a - 1))
# %%
# Let's first visualize the datasets as well as the distribution of the
# residuals `y - mean(y)`.
import matplotlib.pyplot as plt
_, axs = plt.subplots(nrows=2, ncols=2, figsize=(15, 11), sharex="row", sharey="row")
axs[0, 0].plot(x, y_true_mean, label="True mean")
axs[0, 0].scatter(x, y_normal, color="black", alpha=0.5, label="Observations")
axs[1, 0].hist(y_true_mean - y_normal, edgecolor="black")
axs[0, 1].plot(x, y_true_mean, label="True mean")
axs[0, 1].scatter(x, y_pareto, color="black", alpha=0.5, label="Observations")
axs[1, 1].hist(y_true_mean - y_pareto, edgecolor="black")
axs[0, 0].set_title("Dataset with heteroscedastic Normal distributed targets")
axs[0, 1].set_title("Dataset with asymmetric Pareto distributed target")
axs[1, 0].set_title(
"Residuals distribution for heteroscedastic Normal distributed targets"
)
axs[1, 1].set_title("Residuals distribution for asymmetric Pareto distributed target")
axs[0, 0].legend()
axs[0, 1].legend()
axs[0, 0].set_ylabel("y")
axs[1, 0].set_ylabel("Counts")
axs[0, 1].set_xlabel("x")
axs[0, 0].set_xlabel("x")
axs[1, 0].set_xlabel("Residuals")
_ = axs[1, 1].set_xlabel("Residuals")
# %%
# With the heteroscedastic Normal distributed target, we observe that the
# variance of the noise is increasing when the value of the feature `x` is
# increasing.
#
# With the asymmetric Pareto distributed target, we observe that the positive
# residuals are bounded.
#
# These types of noisy targets make the estimation via
# :class:`~sklearn.linear_model.LinearRegression` less efficient, i.e. we need
# more data to get stable results and, in addition, large outliers can have a
# huge impact on the fitted coefficients. (Stated otherwise: in a setting with
# constant variance, ordinary least squares estimators converge much faster to
# the *true* coefficients with increasing sample size.)
#
# In this asymmetric setting, the median or different quantiles give additional
# insights. On top of that, median estimation is much more robust to outliers
# and heavy tailed distributions. But note that extreme quantiles are estimated
# by very view data points. 95% quantile are more or less estimated by the 5%
# largest values and thus also a bit sensitive outliers.
#
# In the remainder of this tutorial, we will show how
# :class:`~sklearn.linear_model.QuantileRegressor` can be used in practice and
# give the intuition into the properties of the fitted models. Finally,
# we will compare the both :class:`~sklearn.linear_model.QuantileRegressor`
# and :class:`~sklearn.linear_model.LinearRegression`.
#
# Fitting a `QuantileRegressor`
# -----------------------------
#
# In this section, we want to estimate the conditional median as well as
# a low and high quantile fixed at 5% and 95%, respectively. Thus, we will get
# three linear models, one for each quantile.
#
# We will use the quantiles at 5% and 95% to find the outliers in the training
# sample beyond the central 90% interval.
from sklearn.linear_model import QuantileRegressor
quantiles = [0.05, 0.5, 0.95]
predictions = {}
out_bounds_predictions = np.zeros_like(y_true_mean, dtype=np.bool_)
for quantile in quantiles:
qr = QuantileRegressor(quantile=quantile, alpha=0)
y_pred = qr.fit(X, y_normal).predict(X)
predictions[quantile] = y_pred
if quantile == min(quantiles):
out_bounds_predictions = np.logical_or(
out_bounds_predictions, y_pred >= y_normal
)
elif quantile == max(quantiles):
out_bounds_predictions = np.logical_or(
out_bounds_predictions, y_pred <= y_normal
)
# %%
# Now, we can plot the three linear models and the distinguished samples that
# are within the central 90% interval from samples that are outside this
# interval.
plt.plot(X, y_true_mean, color="black", linestyle="dashed", label="True mean")
for quantile, y_pred in predictions.items():
plt.plot(X, y_pred, label=f"Quantile: {quantile}")
plt.scatter(
x[out_bounds_predictions],
y_normal[out_bounds_predictions],
color="black",
marker="+",
alpha=0.5,
label="Outside interval",
)
plt.scatter(
x[~out_bounds_predictions],
y_normal[~out_bounds_predictions],
color="black",
alpha=0.5,
label="Inside interval",
)
plt.legend()
plt.xlabel("x")
plt.ylabel("y")
_ = plt.title("Quantiles of heteroscedastic Normal distributed target")
# %%
# Since the noise is still Normally distributed, in particular is symmetric,
# the true conditional mean and the true conditional median coincide. Indeed,
# we see that the estimated median almost hits the true mean. We observe the
# effect of having an increasing noise variance on the 5% and 95% quantiles:
# the slopes of those quantiles are very different and the interval between
# them becomes wider with increasing `x`.
#
# To get an additional intuition regarding the meaning of the 5% and 95%
# quantiles estimators, one can count the number of samples above and below the
# predicted quantiles (represented by a cross on the above plot), considering
# that we have a total of 100 samples.
#
# We can repeat the same experiment using the asymmetric Pareto distributed
# target.
quantiles = [0.05, 0.5, 0.95]
predictions = {}
out_bounds_predictions = np.zeros_like(y_true_mean, dtype=np.bool_)
for quantile in quantiles:
qr = QuantileRegressor(quantile=quantile, alpha=0)
y_pred = qr.fit(X, y_pareto).predict(X)
predictions[quantile] = y_pred
if quantile == min(quantiles):
out_bounds_predictions = np.logical_or(
out_bounds_predictions, y_pred >= y_pareto
)
elif quantile == max(quantiles):
out_bounds_predictions = np.logical_or(
out_bounds_predictions, y_pred <= y_pareto
)
# %%
plt.plot(X, y_true_mean, color="black", linestyle="dashed", label="True mean")
for quantile, y_pred in predictions.items():
plt.plot(X, y_pred, label=f"Quantile: {quantile}")
plt.scatter(
x[out_bounds_predictions],
y_pareto[out_bounds_predictions],
color="black",
marker="+",
alpha=0.5,
label="Outside interval",
)
plt.scatter(
x[~out_bounds_predictions],
y_pareto[~out_bounds_predictions],
color="black",
alpha=0.5,
label="Inside interval",
)
plt.legend()
plt.xlabel("x")
plt.ylabel("y")
_ = plt.title("Quantiles of asymmetric Pareto distributed target")
# %%
# Due to the asymmetry of the distribution of the noise, we observe that the
# true mean and estimated conditional median are different. We also observe
# that each quantile model has different parameters to better fit the desired
# quantile. Note that ideally, all quantiles would be parallel in this case,
# which would become more visible with more data points or less extreme
# quantiles, e.g. 10% and 90%.
#
# Comparing `QuantileRegressor` and `LinearRegression`
# ----------------------------------------------------
#
# In this section, we will linger on the difference regarding the error that
# :class:`~sklearn.linear_model.QuantileRegressor` and
# :class:`~sklearn.linear_model.LinearRegression` are minimizing.
#
# Indeed, :class:`~sklearn.linear_model.LinearRegression` is a least squares
# approach minimizing the mean squared error (MSE) between the training and
# predicted targets. In contrast,
# :class:`~sklearn.linear_model.QuantileRegressor` with `quantile=0.5`
# minimizes the mean absolute error (MAE) instead.
#
# Let's first compute the training errors of such models in terms of mean
# squared error and mean absolute error. We will use the asymmetric Pareto
# distributed target to make it more interesting as mean and median are not
# equal.
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
linear_regression = LinearRegression()
quantile_regression = QuantileRegressor(quantile=0.5, alpha=0)
y_pred_lr = linear_regression.fit(X, y_pareto).predict(X)
y_pred_qr = quantile_regression.fit(X, y_pareto).predict(X)
print(
f"""Training error (in-sample performance)
{linear_regression.__class__.__name__}:
MAE = {mean_absolute_error(y_pareto, y_pred_lr):.3f}
MSE = {mean_squared_error(y_pareto, y_pred_lr):.3f}
{quantile_regression.__class__.__name__}:
MAE = {mean_absolute_error(y_pareto, y_pred_qr):.3f}
MSE = {mean_squared_error(y_pareto, y_pred_qr):.3f}
"""
)
# %%
# On the training set, we see that MAE is lower for
# :class:`~sklearn.linear_model.QuantileRegressor` than
# :class:`~sklearn.linear_model.LinearRegression`. In contrast to that, MSE is
# lower for :class:`~sklearn.linear_model.LinearRegression` than
# :class:`~sklearn.linear_model.QuantileRegressor`. These results confirms that
# MAE is the loss minimized by :class:`~sklearn.linear_model.QuantileRegressor`
# while MSE is the loss minimized
# :class:`~sklearn.linear_model.LinearRegression`.
#
# We can make a similar evaluation but looking a the test error obtained by
# cross-validation.
from sklearn.model_selection import cross_validate
cv_results_lr = cross_validate(
linear_regression,
X,
y_pareto,
cv=3,
scoring=["neg_mean_absolute_error", "neg_mean_squared_error"],
)
cv_results_qr = cross_validate(
quantile_regression,
X,
y_pareto,
cv=3,
scoring=["neg_mean_absolute_error", "neg_mean_squared_error"],
)
print(
f"""Test error (cross-validated performance)
{linear_regression.__class__.__name__}:
MAE = {-cv_results_lr["test_neg_mean_absolute_error"].mean():.3f}
MSE = {-cv_results_lr["test_neg_mean_squared_error"].mean():.3f}
{quantile_regression.__class__.__name__}:
MAE = {-cv_results_qr["test_neg_mean_absolute_error"].mean():.3f}
MSE = {-cv_results_qr["test_neg_mean_squared_error"].mean():.3f}
"""
)
# %%
# We reach similar conclusions on the out-of-sample evaluation.