forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_det.py
97 lines (75 loc) · 3.31 KB
/
plot_det.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
"""
====================================
Detection error tradeoff (DET) curve
====================================
In this example, we compare receiver operating characteristic (ROC) and
detection error tradeoff (DET) curves for different classification algorithms
for the same classification task.
DET curves are commonly plotted in normal deviate scale.
To achieve this the DET display transforms the error rates as returned by the
:func:`~sklearn.metrics.det_curve` and the axis scale using
:func:`scipy.stats.norm`.
The point of this example is to demonstrate two properties of DET curves,
namely:
1. It might be easier to visually assess the overall performance of different
classification algorithms using DET curves over ROC curves.
Due to the linear scale used for plotting ROC curves, different classifiers
usually only differ in the top left corner of the graph and appear similar
for a large part of the plot. On the other hand, because DET curves
represent straight lines in normal deviate scale. As such, they tend to be
distinguishable as a whole and the area of interest spans a large part of
the plot.
2. DET curves give the user direct feedback of the detection error tradeoff to
aid in operating point analysis.
The user can deduct directly from the DET-curve plot at which rate
false-negative error rate will improve when willing to accept an increase in
false-positive error rate (or vice-versa).
The plots in this example compare ROC curves on the left side to corresponding
DET curves on the right.
There is no particular reason why these classifiers have been chosen for the
example plot over other classifiers available in scikit-learn.
.. note::
- See :func:`sklearn.metrics.roc_curve` for further information about ROC
curves.
- See :func:`sklearn.metrics.det_curve` for further information about
DET curves.
- This example is loosely based on
:ref:`sphx_glr_auto_examples_classification_plot_classifier_comparison.py`
example.
"""
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import DetCurveDisplay, RocCurveDisplay
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC
N_SAMPLES = 1000
classifiers = {
"Linear SVM": make_pipeline(StandardScaler(), LinearSVC(C=0.025)),
"Random Forest": RandomForestClassifier(
max_depth=5, n_estimators=10, max_features=1
),
}
X, y = make_classification(
n_samples=N_SAMPLES,
n_features=2,
n_redundant=0,
n_informative=2,
random_state=1,
n_clusters_per_class=1,
)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0)
# prepare plots
fig, [ax_roc, ax_det] = plt.subplots(1, 2, figsize=(11, 5))
for name, clf in classifiers.items():
clf.fit(X_train, y_train)
RocCurveDisplay.from_estimator(clf, X_test, y_test, ax=ax_roc, name=name)
DetCurveDisplay.from_estimator(clf, X_test, y_test, ax=ax_det, name=name)
ax_roc.set_title("Receiver Operating Characteristic (ROC) curves")
ax_det.set_title("Detection Error Tradeoff (DET) curves")
ax_roc.grid(linestyle="--")
ax_det.grid(linestyle="--")
plt.legend()
plt.show()