forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_likelihood_ratios.py
325 lines (272 loc) · 11.7 KB
/
plot_likelihood_ratios.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
"""
=============================================================
Class Likelihood Ratios to measure classification performance
=============================================================
This example demonstrates the :func:`~sklearn.metrics.class_likelihood_ratios`
function, which computes the positive and negative likelihood ratios (`LR+`,
`LR-`) to assess the predictive power of a binary classifier. As we will see,
these metrics are independent of the proportion between classes in the test set,
which makes them very useful when the available data for a study has a different
class proportion than the target application.
A typical use is a case-control study in medicine, which has nearly balanced
classes while the general population has large class imbalance. In such
application, the pre-test probability of an individual having the target
condition can be chosen to be the prevalence, i.e. the proportion of a
particular population found to be affected by a medical condition. The post-test
probabilities represent then the probability that the condition is truly present
given a positive test result.
In this example we first discuss the link between pre-test and post-test odds
given by the :ref:`class_likelihood_ratios`. Then we evaluate their behavior in
some controlled scenarios. In the last section we plot them as a function of the
prevalence of the positive class.
"""
# Authors: Arturo Amor <[email protected]>
# Olivier Grisel <[email protected]>
# %%
# Pre-test vs. post-test analysis
# ===============================
#
# Suppose we have a population of subjects with physiological measurements `X`
# that can hopefully serve as indirect bio-markers of the disease and actual
# disease indicators `y` (ground truth). Most of the people in the population do
# not carry the disease but a minority (in this case around 10%) does:
from sklearn.datasets import make_classification
X, y = make_classification(n_samples=10_000, weights=[0.9, 0.1], random_state=0)
print(f"Percentage of people carrying the disease: {100*y.mean():.2f}%")
# %%
# A machine learning model is built to diagnose if a person with some given
# physiological measurements is likely to carry the disease of interest. To
# evaluate the model, we need to assess its performance on a held-out test set:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
# %%
# Then we can fit our diagnosis model and compute the positive likelihood
# ratio to evaluate the usefulness of this classifier as a disease diagnosis
# tool:
from sklearn.metrics import class_likelihood_ratios
from sklearn.linear_model import LogisticRegression
estimator = LogisticRegression().fit(X_train, y_train)
y_pred = estimator.predict(X_test)
pos_LR, neg_LR = class_likelihood_ratios(y_test, y_pred)
print(f"LR+: {pos_LR:.3f}")
# %%
# Since the positive class likelihood ratio is much larger than 1.0, it means
# that the machine learning-based diagnosis tool is useful: the post-test odds
# that the condition is truly present given a positive test result are more than
# 12 times larger than the pre-test odds.
#
# Cross-validation of likelihood ratios
# =====================================
#
# We assess the variability of the measurements for the class likelihood ratios
# in some particular cases.
import pandas as pd
def scoring(estimator, X, y):
y_pred = estimator.predict(X)
pos_lr, neg_lr = class_likelihood_ratios(y, y_pred, raise_warning=False)
return {"positive_likelihood_ratio": pos_lr, "negative_likelihood_ratio": neg_lr}
def extract_score(cv_results):
lr = pd.DataFrame(
{
"positive": cv_results["test_positive_likelihood_ratio"],
"negative": cv_results["test_negative_likelihood_ratio"],
}
)
return lr.aggregate(["mean", "std"])
# %%
# We first validate the :class:`~sklearn.linear_model.LogisticRegression` model
# with default hyperparameters as used in the previous section.
from sklearn.model_selection import cross_validate
estimator = LogisticRegression()
extract_score(cross_validate(estimator, X, y, scoring=scoring, cv=10))
# %%
# We confirm that the model is useful: the post-test odds are between 12 and 20
# times larger than the pre-test odds.
#
# On the contrary, let's consider a dummy model that will output random
# predictions with similar odds as the average disease prevalence in the
# training set:
from sklearn.dummy import DummyClassifier
estimator = DummyClassifier(strategy="stratified", random_state=1234)
extract_score(cross_validate(estimator, X, y, scoring=scoring, cv=10))
# %%
# Here both class likelihood ratios are compatible with 1.0 which makes this
# classifier useless as a diagnostic tool to improve disease detection.
#
# Another option for the dummy model is to always predict the most frequent
# class, which in this case is "no-disease".
estimator = DummyClassifier(strategy="most_frequent")
extract_score(cross_validate(estimator, X, y, scoring=scoring, cv=10))
# %%
# The absence of positive predictions means there will be no true positives nor
# false positives, leading to an undefined `LR+` that by no means should be
# interpreted as an infinite `LR+` (the classifier perfectly identifying
# positive cases). In such situation the
# :func:`~sklearn.metrics.class_likelihood_ratios` function returns `nan` and
# raises a warning by default. Indeed, the value of `LR-` helps us discard this
# model.
#
# A similar scenario may arise when cross-validating highly imbalanced data with
# few samples: some folds will have no samples with the disease and therefore
# they will output no true positives nor false negatives when used for testing.
# Mathematically this leads to an infinite `LR+`, which should also not be
# interpreted as the model perfectly identifying positive cases. Such event
# leads to a higher variance of the estimated likelihood ratios, but can still
# be interpreted as an increment of the post-test odds of having the condition.
estimator = LogisticRegression()
X, y = make_classification(n_samples=300, weights=[0.9, 0.1], random_state=0)
extract_score(cross_validate(estimator, X, y, scoring=scoring, cv=10))
# %%
# Invariance with respect to prevalence
# =====================================
#
# The likelihood ratios are independent of the disease prevalence and can be
# extrapolated between populations regardless of any possible class imbalance,
# **as long as the same model is applied to all of them**. Notice that in the
# plots below **the decision boundary is constant** (see
# :ref:`sphx_glr_auto_examples_svm_plot_separating_hyperplane_unbalanced.py` for
# a study of the boundary decision for unbalanced classes).
#
# Here we train a :class:`~sklearn.linear_model.LogisticRegression` base model
# on a case-control study with a prevalence of 50%. It is then evaluated over
# populations with varying prevalence. We use the
# :func:`~sklearn.datasets.make_classification` function to ensure the
# data-generating process is always the same as shown in the plots below. The
# label `1` corresponds to the positive class "disease", whereas the label `0`
# stands for "no-disease".
import numpy as np
import matplotlib.pyplot as plt
from sklearn.inspection import DecisionBoundaryDisplay
from collections import defaultdict
populations = defaultdict(list)
common_params = {
"n_samples": 10_000,
"n_features": 2,
"n_informative": 2,
"n_redundant": 0,
"random_state": 0,
}
weights = np.linspace(0.1, 0.8, 6)
weights = weights[::-1]
# fit and evaluate base model on balanced classes
X, y = make_classification(**common_params, weights=[0.5, 0.5])
estimator = LogisticRegression().fit(X, y)
lr_base = extract_score(cross_validate(estimator, X, y, scoring=scoring, cv=10))
pos_lr_base, pos_lr_base_std = lr_base["positive"].values
neg_lr_base, neg_lr_base_std = lr_base["negative"].values
# %%
# We will now show the decision boundary for each level of prevalence. Note that
# we only plot a subset of the original data to better assess the linear model
# decision boundary.
fig, axs = plt.subplots(nrows=3, ncols=2, figsize=(15, 12))
for ax, (n, weight) in zip(axs.ravel(), enumerate(weights)):
X, y = make_classification(
**common_params,
weights=[weight, 1 - weight],
)
prevalence = y.mean()
populations["prevalence"].append(prevalence)
populations["X"].append(X)
populations["y"].append(y)
# down-sample for plotting
rng = np.random.RandomState(1)
plot_indices = rng.choice(np.arange(X.shape[0]), size=500, replace=True)
X_plot, y_plot = X[plot_indices], y[plot_indices]
# plot fixed decision boundary of base model with varying prevalence
disp = DecisionBoundaryDisplay.from_estimator(
estimator,
X_plot,
response_method="predict",
alpha=0.5,
ax=ax,
)
scatter = disp.ax_.scatter(X_plot[:, 0], X_plot[:, 1], c=y_plot, edgecolor="k")
disp.ax_.set_title(f"prevalence = {y_plot.mean():.2f}")
disp.ax_.legend(*scatter.legend_elements())
# %%
# We define a function for bootstraping.
def scoring_on_bootstrap(estimator, X, y, rng, n_bootstrap=100):
results_for_prevalence = defaultdict(list)
for _ in range(n_bootstrap):
bootstrap_indices = rng.choice(
np.arange(X.shape[0]), size=X.shape[0], replace=True
)
for key, value in scoring(
estimator, X[bootstrap_indices], y[bootstrap_indices]
).items():
results_for_prevalence[key].append(value)
return pd.DataFrame(results_for_prevalence)
# %%
# We score the base model for each prevalence using bootstraping.
results = defaultdict(list)
n_bootstrap = 100
rng = np.random.default_rng(seed=0)
for prevalence, X, y in zip(
populations["prevalence"], populations["X"], populations["y"]
):
results_for_prevalence = scoring_on_bootstrap(
estimator, X, y, rng, n_bootstrap=n_bootstrap
)
results["prevalence"].append(prevalence)
results["metrics"].append(
results_for_prevalence.aggregate(["mean", "std"]).unstack()
)
results = pd.DataFrame(results["metrics"], index=results["prevalence"])
results.index.name = "prevalence"
results
# %%
# In the plots below we observe that the class likelihood ratios re-computed
# with different prevalences are indeed constant within one standard deviation
# of those computed with on balanced classes.
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(15, 6))
results["positive_likelihood_ratio"]["mean"].plot(
ax=ax1, color="r", label="extrapolation through populations"
)
ax1.axhline(y=pos_lr_base + pos_lr_base_std, color="r", linestyle="--")
ax1.axhline(
y=pos_lr_base - pos_lr_base_std,
color="r",
linestyle="--",
label="base model confidence band",
)
ax1.fill_between(
results.index,
results["positive_likelihood_ratio"]["mean"]
- results["positive_likelihood_ratio"]["std"],
results["positive_likelihood_ratio"]["mean"]
+ results["positive_likelihood_ratio"]["std"],
color="r",
alpha=0.3,
)
ax1.set(
title="Positive likelihood ratio",
ylabel="LR+",
ylim=[0, 5],
)
ax1.legend(loc="lower right")
ax2 = results["negative_likelihood_ratio"]["mean"].plot(
ax=ax2, color="b", label="extrapolation through populations"
)
ax2.axhline(y=neg_lr_base + neg_lr_base_std, color="b", linestyle="--")
ax2.axhline(
y=neg_lr_base - neg_lr_base_std,
color="b",
linestyle="--",
label="base model confidence band",
)
ax2.fill_between(
results.index,
results["negative_likelihood_ratio"]["mean"]
- results["negative_likelihood_ratio"]["std"],
results["negative_likelihood_ratio"]["mean"]
+ results["negative_likelihood_ratio"]["std"],
color="b",
alpha=0.3,
)
ax2.set(
title="Negative likelihood ratio",
ylabel="LR-",
ylim=[0, 0.5],
)
ax2.legend(loc="lower right")
plt.show()