forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_affinity_propagation.py
284 lines (222 loc) · 9.56 KB
/
test_affinity_propagation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
"""
Testing for Clustering methods
"""
import numpy as np
import pytest
import warnings
from scipy.sparse import csr_matrix
from sklearn.exceptions import ConvergenceWarning
from sklearn.utils._testing import assert_array_equal
from sklearn.cluster import AffinityPropagation
from sklearn.cluster._affinity_propagation import _equal_similarities_and_preferences
from sklearn.cluster import affinity_propagation
from sklearn.datasets import make_blobs
from sklearn.metrics import euclidean_distances
n_clusters = 3
centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10
X, _ = make_blobs(
n_samples=60,
n_features=2,
centers=centers,
cluster_std=0.4,
shuffle=True,
random_state=0,
)
def test_affinity_propagation():
# Affinity Propagation algorithm
# Compute similarities
S = -euclidean_distances(X, squared=True)
preference = np.median(S) * 10
# Compute Affinity Propagation
cluster_centers_indices, labels = affinity_propagation(
S, preference=preference, random_state=39
)
n_clusters_ = len(cluster_centers_indices)
assert n_clusters == n_clusters_
af = AffinityPropagation(
preference=preference, affinity="precomputed", random_state=28
)
labels_precomputed = af.fit(S).labels_
af = AffinityPropagation(preference=preference, verbose=True, random_state=37)
labels = af.fit(X).labels_
assert_array_equal(labels, labels_precomputed)
cluster_centers_indices = af.cluster_centers_indices_
n_clusters_ = len(cluster_centers_indices)
assert np.unique(labels).size == n_clusters_
assert n_clusters == n_clusters_
# Test also with no copy
_, labels_no_copy = affinity_propagation(
S, preference=preference, copy=False, random_state=74
)
assert_array_equal(labels, labels_no_copy)
def test_affinity_propagation_affinity_shape():
"""Check the shape of the affinity matrix when using `affinity_propagation."""
S = -euclidean_distances(X, squared=True)
err_msg = "S must be a square array"
with pytest.raises(ValueError, match=err_msg):
affinity_propagation(S[:, :-1])
@pytest.mark.parametrize(
"input, params, err_type, err_msg",
[
(X, {"damping": 0}, ValueError, "damping == 0, must be >= 0.5"),
(X, {"damping": 2}, ValueError, "damping == 2, must be < 1"),
(X, {"max_iter": 0}, ValueError, "max_iter == 0, must be >= 1."),
(X, {"convergence_iter": 0}, ValueError, "convergence_iter == 0, must be >= 1"),
(X, {"affinity": "unknown"}, ValueError, "Affinity must be"),
(
csr_matrix((3, 3)),
{"affinity": "precomputed"},
TypeError,
"A sparse matrix was passed, but dense data is required",
),
],
)
def test_affinity_propagation_params_validation(input, params, err_type, err_msg):
"""Check the parameters validation in `AffinityPropagation`."""
with pytest.raises(err_type, match=err_msg):
AffinityPropagation(**params).fit(input)
def test_affinity_propagation_predict():
# Test AffinityPropagation.predict
af = AffinityPropagation(affinity="euclidean", random_state=63)
labels = af.fit_predict(X)
labels2 = af.predict(X)
assert_array_equal(labels, labels2)
def test_affinity_propagation_predict_error():
# Test exception in AffinityPropagation.predict
# Not fitted.
af = AffinityPropagation(affinity="euclidean")
with pytest.raises(ValueError):
af.predict(X)
# Predict not supported when affinity="precomputed".
S = np.dot(X, X.T)
af = AffinityPropagation(affinity="precomputed", random_state=57)
af.fit(S)
with pytest.raises(ValueError):
af.predict(X)
def test_affinity_propagation_fit_non_convergence():
# In case of non-convergence of affinity_propagation(), the cluster
# centers should be an empty array and training samples should be labelled
# as noise (-1)
X = np.array([[0, 0], [1, 1], [-2, -2]])
# Force non-convergence by allowing only a single iteration
af = AffinityPropagation(preference=-10, max_iter=1, random_state=82)
with pytest.warns(ConvergenceWarning):
af.fit(X)
assert_array_equal(np.empty((0, 2)), af.cluster_centers_)
assert_array_equal(np.array([-1, -1, -1]), af.labels_)
def test_affinity_propagation_equal_mutual_similarities():
X = np.array([[-1, 1], [1, -1]])
S = -euclidean_distances(X, squared=True)
# setting preference > similarity
with pytest.warns(UserWarning, match="mutually equal"):
cluster_center_indices, labels = affinity_propagation(S, preference=0)
# expect every sample to become an exemplar
assert_array_equal([0, 1], cluster_center_indices)
assert_array_equal([0, 1], labels)
# setting preference < similarity
with pytest.warns(UserWarning, match="mutually equal"):
cluster_center_indices, labels = affinity_propagation(S, preference=-10)
# expect one cluster, with arbitrary (first) sample as exemplar
assert_array_equal([0], cluster_center_indices)
assert_array_equal([0, 0], labels)
# setting different preferences
with warnings.catch_warnings():
warnings.simplefilter("error", UserWarning)
cluster_center_indices, labels = affinity_propagation(
S, preference=[-20, -10], random_state=37
)
# expect one cluster, with highest-preference sample as exemplar
assert_array_equal([1], cluster_center_indices)
assert_array_equal([0, 0], labels)
def test_affinity_propagation_predict_non_convergence():
# In case of non-convergence of affinity_propagation(), the cluster
# centers should be an empty array
X = np.array([[0, 0], [1, 1], [-2, -2]])
# Force non-convergence by allowing only a single iteration
with pytest.warns(ConvergenceWarning):
af = AffinityPropagation(preference=-10, max_iter=1, random_state=75).fit(X)
# At prediction time, consider new samples as noise since there are no
# clusters
to_predict = np.array([[2, 2], [3, 3], [4, 4]])
with pytest.warns(ConvergenceWarning):
y = af.predict(to_predict)
assert_array_equal(np.array([-1, -1, -1]), y)
def test_affinity_propagation_non_convergence_regressiontest():
X = np.array([[1, 0, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0], [0, 0, 1, 0, 0, 1]])
af = AffinityPropagation(affinity="euclidean", max_iter=2, random_state=34)
msg = (
"Affinity propagation did not converge, this model may return degenerate"
" cluster centers and labels."
)
with pytest.warns(ConvergenceWarning, match=msg):
af.fit(X)
assert_array_equal(np.array([0, 0, 0]), af.labels_)
def test_equal_similarities_and_preferences():
# Unequal distances
X = np.array([[0, 0], [1, 1], [-2, -2]])
S = -euclidean_distances(X, squared=True)
assert not _equal_similarities_and_preferences(S, np.array(0))
assert not _equal_similarities_and_preferences(S, np.array([0, 0]))
assert not _equal_similarities_and_preferences(S, np.array([0, 1]))
# Equal distances
X = np.array([[0, 0], [1, 1]])
S = -euclidean_distances(X, squared=True)
# Different preferences
assert not _equal_similarities_and_preferences(S, np.array([0, 1]))
# Same preferences
assert _equal_similarities_and_preferences(S, np.array([0, 0]))
assert _equal_similarities_and_preferences(S, np.array(0))
def test_affinity_propagation_random_state():
# Significance of random_state parameter
# Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(
n_samples=300, centers=centers, cluster_std=0.5, random_state=0
)
# random_state = 0
ap = AffinityPropagation(convergence_iter=1, max_iter=2, random_state=0)
ap.fit(X)
centers0 = ap.cluster_centers_
# random_state = 76
ap = AffinityPropagation(convergence_iter=1, max_iter=2, random_state=76)
ap.fit(X)
centers76 = ap.cluster_centers_
assert np.mean((centers0 - centers76) ** 2) > 1
@pytest.mark.parametrize("centers", [csr_matrix(np.zeros((1, 10))), np.zeros((1, 10))])
def test_affinity_propagation_convergence_warning_dense_sparse(centers):
"""Non-regression, see #13334"""
rng = np.random.RandomState(42)
X = rng.rand(40, 10)
y = (4 * rng.rand(40)).astype(int)
ap = AffinityPropagation(random_state=46)
ap.fit(X, y)
ap.cluster_centers_ = centers
with warnings.catch_warnings():
warnings.simplefilter("error", ConvergenceWarning)
assert_array_equal(ap.predict(X), np.zeros(X.shape[0], dtype=int))
def test_affinity_propagation_float32():
# Test to fix incorrect clusters due to dtype change
# (non-regression test for issue #10832)
X = np.array(
[[1, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 1]], dtype="float32"
)
afp = AffinityPropagation(preference=1, affinity="precomputed", random_state=0).fit(
X
)
expected = np.array([0, 1, 1, 2])
assert_array_equal(afp.labels_, expected)
def test_sparse_input_for_predict():
# Test to make sure sparse inputs are accepted for predict
# (non-regression test for issue #20049)
af = AffinityPropagation(affinity="euclidean", random_state=42)
af.fit(X)
labels = af.predict(csr_matrix((2, 2)))
assert_array_equal(labels, (2, 2))
def test_sparse_input_for_fit_predict():
# Test to make sure sparse inputs are accepted for fit_predict
# (non-regression test for issue #20049)
af = AffinityPropagation(affinity="euclidean", random_state=42)
rng = np.random.RandomState(42)
X = csr_matrix(rng.randint(0, 2, size=(5, 5)))
labels = af.fit_predict(X)
assert_array_equal(labels, (0, 1, 1, 2, 3))