forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_ransac.py
632 lines (525 loc) · 22.9 KB
/
_ransac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
# Author: Johannes Schönberger
#
# License: BSD 3 clause
import numpy as np
import warnings
from ..base import BaseEstimator, MetaEstimatorMixin, RegressorMixin, clone
from ..base import MultiOutputMixin
from ..utils import check_random_state, check_consistent_length
from ..utils.random import sample_without_replacement
from ..utils.validation import check_is_fitted, _check_sample_weight
from ._base import LinearRegression
from ..utils.validation import has_fit_parameter
from ..exceptions import ConvergenceWarning
_EPSILON = np.spacing(1)
def _dynamic_max_trials(n_inliers, n_samples, min_samples, probability):
"""Determine number trials such that at least one outlier-free subset is
sampled for the given inlier/outlier ratio.
Parameters
----------
n_inliers : int
Number of inliers in the data.
n_samples : int
Total number of samples in the data.
min_samples : int
Minimum number of samples chosen randomly from original data.
probability : float
Probability (confidence) that one outlier-free sample is generated.
Returns
-------
trials : int
Number of trials.
"""
inlier_ratio = n_inliers / float(n_samples)
nom = max(_EPSILON, 1 - probability)
denom = max(_EPSILON, 1 - inlier_ratio**min_samples)
if nom == 1:
return 0
if denom == 1:
return float("inf")
return abs(float(np.ceil(np.log(nom) / np.log(denom))))
class RANSACRegressor(
MetaEstimatorMixin, RegressorMixin, MultiOutputMixin, BaseEstimator
):
"""RANSAC (RANdom SAmple Consensus) algorithm.
RANSAC is an iterative algorithm for the robust estimation of parameters
from a subset of inliers from the complete data set.
Read more in the :ref:`User Guide <ransac_regression>`.
Parameters
----------
estimator : object, default=None
Base estimator object which implements the following methods:
* `fit(X, y)`: Fit model to given training data and target values.
* `score(X, y)`: Returns the mean accuracy on the given test data,
which is used for the stop criterion defined by `stop_score`.
Additionally, the score is used to decide which of two equally
large consensus sets is chosen as the better one.
* `predict(X)`: Returns predicted values using the linear model,
which is used to compute residual error using loss function.
If `estimator` is None, then
:class:`~sklearn.linear_model.LinearRegression` is used for
target values of dtype float.
Note that the current implementation only supports regression
estimators.
min_samples : int (>= 1) or float ([0, 1]), default=None
Minimum number of samples chosen randomly from original data. Treated
as an absolute number of samples for `min_samples >= 1`, treated as a
relative number `ceil(min_samples * X.shape[0])` for
`min_samples < 1`. This is typically chosen as the minimal number of
samples necessary to estimate the given `estimator`. By default a
``sklearn.linear_model.LinearRegression()`` estimator is assumed and
`min_samples` is chosen as ``X.shape[1] + 1``. This parameter is highly
dependent upon the model, so if a `estimator` other than
:class:`linear_model.LinearRegression` is used, the user is
encouraged to provide a value.
.. deprecated:: 1.0
Not setting `min_samples` explicitly will raise an error in version
1.2 for models other than
:class:`~sklearn.linear_model.LinearRegression`. To keep the old
default behavior, set `min_samples=X.shape[1] + 1` explicitly.
residual_threshold : float, default=None
Maximum residual for a data sample to be classified as an inlier.
By default the threshold is chosen as the MAD (median absolute
deviation) of the target values `y`. Points whose residuals are
strictly equal to the threshold are considered as inliers.
is_data_valid : callable, default=None
This function is called with the randomly selected data before the
model is fitted to it: `is_data_valid(X, y)`. If its return value is
False the current randomly chosen sub-sample is skipped.
is_model_valid : callable, default=None
This function is called with the estimated model and the randomly
selected data: `is_model_valid(model, X, y)`. If its return value is
False the current randomly chosen sub-sample is skipped.
Rejecting samples with this function is computationally costlier than
with `is_data_valid`. `is_model_valid` should therefore only be used if
the estimated model is needed for making the rejection decision.
max_trials : int, default=100
Maximum number of iterations for random sample selection.
max_skips : int, default=np.inf
Maximum number of iterations that can be skipped due to finding zero
inliers or invalid data defined by ``is_data_valid`` or invalid models
defined by ``is_model_valid``.
.. versionadded:: 0.19
stop_n_inliers : int, default=np.inf
Stop iteration if at least this number of inliers are found.
stop_score : float, default=np.inf
Stop iteration if score is greater equal than this threshold.
stop_probability : float in range [0, 1], default=0.99
RANSAC iteration stops if at least one outlier-free set of the training
data is sampled in RANSAC. This requires to generate at least N
samples (iterations)::
N >= log(1 - probability) / log(1 - e**m)
where the probability (confidence) is typically set to high value such
as 0.99 (the default) and e is the current fraction of inliers w.r.t.
the total number of samples.
loss : str, callable, default='absolute_error'
String inputs, 'absolute_error' and 'squared_error' are supported which
find the absolute error and squared error per sample respectively.
If ``loss`` is a callable, then it should be a function that takes
two arrays as inputs, the true and predicted value and returns a 1-D
array with the i-th value of the array corresponding to the loss
on ``X[i]``.
If the loss on a sample is greater than the ``residual_threshold``,
then this sample is classified as an outlier.
.. versionadded:: 0.18
.. deprecated:: 1.0
The loss 'squared_loss' was deprecated in v1.0 and will be removed
in version 1.2. Use `loss='squared_error'` which is equivalent.
.. deprecated:: 1.0
The loss 'absolute_loss' was deprecated in v1.0 and will be removed
in version 1.2. Use `loss='absolute_error'` which is equivalent.
random_state : int, RandomState instance, default=None
The generator used to initialize the centers.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
base_estimator : object, default="deprecated"
Use `estimator` instead.
.. deprecated:: 1.1
`base_estimator` is deprecated and will be removed in 1.3.
Use `estimator` instead.
Attributes
----------
estimator_ : object
Best fitted model (copy of the `estimator` object).
n_trials_ : int
Number of random selection trials until one of the stop criteria is
met. It is always ``<= max_trials``.
inlier_mask_ : bool array of shape [n_samples]
Boolean mask of inliers classified as ``True``.
n_skips_no_inliers_ : int
Number of iterations skipped due to finding zero inliers.
.. versionadded:: 0.19
n_skips_invalid_data_ : int
Number of iterations skipped due to invalid data defined by
``is_data_valid``.
.. versionadded:: 0.19
n_skips_invalid_model_ : int
Number of iterations skipped due to an invalid model defined by
``is_model_valid``.
.. versionadded:: 0.19
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
HuberRegressor : Linear regression model that is robust to outliers.
TheilSenRegressor : Theil-Sen Estimator robust multivariate regression model.
SGDRegressor : Fitted by minimizing a regularized empirical loss with SGD.
References
----------
.. [1] https://en.wikipedia.org/wiki/RANSAC
.. [2] https://www.sri.com/sites/default/files/publications/ransac-publication.pdf
.. [3] http://www.bmva.org/bmvc/2009/Papers/Paper355/Paper355.pdf
Examples
--------
>>> from sklearn.linear_model import RANSACRegressor
>>> from sklearn.datasets import make_regression
>>> X, y = make_regression(
... n_samples=200, n_features=2, noise=4.0, random_state=0)
>>> reg = RANSACRegressor(random_state=0).fit(X, y)
>>> reg.score(X, y)
0.9885...
>>> reg.predict(X[:1,])
array([-31.9417...])
""" # noqa: E501
def __init__(
self,
estimator=None,
*,
min_samples=None,
residual_threshold=None,
is_data_valid=None,
is_model_valid=None,
max_trials=100,
max_skips=np.inf,
stop_n_inliers=np.inf,
stop_score=np.inf,
stop_probability=0.99,
loss="absolute_error",
random_state=None,
base_estimator="deprecated",
):
self.estimator = estimator
self.min_samples = min_samples
self.residual_threshold = residual_threshold
self.is_data_valid = is_data_valid
self.is_model_valid = is_model_valid
self.max_trials = max_trials
self.max_skips = max_skips
self.stop_n_inliers = stop_n_inliers
self.stop_score = stop_score
self.stop_probability = stop_probability
self.random_state = random_state
self.loss = loss
self.base_estimator = base_estimator
def fit(self, X, y, sample_weight=None):
"""Fit estimator using RANSAC algorithm.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training data.
y : array-like of shape (n_samples,) or (n_samples, n_targets)
Target values.
sample_weight : array-like of shape (n_samples,), default=None
Individual weights for each sample
raises error if sample_weight is passed and estimator
fit method does not support it.
.. versionadded:: 0.18
Returns
-------
self : object
Fitted `RANSACRegressor` estimator.
Raises
------
ValueError
If no valid consensus set could be found. This occurs if
`is_data_valid` and `is_model_valid` return False for all
`max_trials` randomly chosen sub-samples.
"""
# Need to validate separately here. We can't pass multi_output=True
# because that would allow y to be csr. Delay expensive finiteness
# check to the estimator's own input validation.
check_X_params = dict(accept_sparse="csr", force_all_finite=False)
check_y_params = dict(ensure_2d=False)
X, y = self._validate_data(
X, y, validate_separately=(check_X_params, check_y_params)
)
check_consistent_length(X, y)
if self.base_estimator != "deprecated":
warnings.warn(
"`base_estimator` was renamed to `estimator` in version 1.1 and "
"will be removed in 1.3.",
FutureWarning,
)
self.estimator = self.base_estimator
if self.estimator is not None:
estimator = clone(self.estimator)
else:
estimator = LinearRegression()
if self.min_samples is None:
if not isinstance(estimator, LinearRegression):
# FIXME: in 1.2, turn this warning into an error
warnings.warn(
"From version 1.2, `min_samples` needs to be explicitly "
"set otherwise an error will be raised. To keep the "
"current behavior, you need to set `min_samples` to "
f"`X.shape[1] + 1 that is {X.shape[1] + 1}",
FutureWarning,
)
min_samples = X.shape[1] + 1
elif 0 < self.min_samples < 1:
min_samples = np.ceil(self.min_samples * X.shape[0])
elif self.min_samples >= 1:
if self.min_samples % 1 != 0:
raise ValueError("Absolute number of samples must be an integer value.")
min_samples = self.min_samples
else:
raise ValueError("Value for `min_samples` must be scalar and positive.")
if min_samples > X.shape[0]:
raise ValueError(
"`min_samples` may not be larger than number "
"of samples: n_samples = %d." % (X.shape[0])
)
if self.stop_probability < 0 or self.stop_probability > 1:
raise ValueError("`stop_probability` must be in range [0, 1].")
if self.residual_threshold is None:
# MAD (median absolute deviation)
residual_threshold = np.median(np.abs(y - np.median(y)))
else:
residual_threshold = self.residual_threshold
# TODO: Remove absolute_loss in v1.2.
if self.loss in ("absolute_error", "absolute_loss"):
if self.loss == "absolute_loss":
warnings.warn(
"The loss 'absolute_loss' was deprecated in v1.0 and will "
"be removed in version 1.2. Use `loss='absolute_error'` "
"which is equivalent.",
FutureWarning,
)
if y.ndim == 1:
loss_function = lambda y_true, y_pred: np.abs(y_true - y_pred)
else:
loss_function = lambda y_true, y_pred: np.sum(
np.abs(y_true - y_pred), axis=1
)
# TODO: Remove squared_loss in v1.2.
elif self.loss in ("squared_error", "squared_loss"):
if self.loss == "squared_loss":
warnings.warn(
"The loss 'squared_loss' was deprecated in v1.0 and will "
"be removed in version 1.2. Use `loss='squared_error'` "
"which is equivalent.",
FutureWarning,
)
if y.ndim == 1:
loss_function = lambda y_true, y_pred: (y_true - y_pred) ** 2
else:
loss_function = lambda y_true, y_pred: np.sum(
(y_true - y_pred) ** 2, axis=1
)
elif callable(self.loss):
loss_function = self.loss
else:
raise ValueError(
"loss should be 'absolute_error', 'squared_error' or a "
"callable. Got %s. "
% self.loss
)
random_state = check_random_state(self.random_state)
try: # Not all estimator accept a random_state
estimator.set_params(random_state=random_state)
except ValueError:
pass
estimator_fit_has_sample_weight = has_fit_parameter(estimator, "sample_weight")
estimator_name = type(estimator).__name__
if sample_weight is not None and not estimator_fit_has_sample_weight:
raise ValueError(
"%s does not support sample_weight. Samples"
" weights are only used for the calibration"
" itself." % estimator_name
)
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X)
n_inliers_best = 1
score_best = -np.inf
inlier_mask_best = None
X_inlier_best = None
y_inlier_best = None
inlier_best_idxs_subset = None
self.n_skips_no_inliers_ = 0
self.n_skips_invalid_data_ = 0
self.n_skips_invalid_model_ = 0
# number of data samples
n_samples = X.shape[0]
sample_idxs = np.arange(n_samples)
self.n_trials_ = 0
max_trials = self.max_trials
while self.n_trials_ < max_trials:
self.n_trials_ += 1
if (
self.n_skips_no_inliers_
+ self.n_skips_invalid_data_
+ self.n_skips_invalid_model_
) > self.max_skips:
break
# choose random sample set
subset_idxs = sample_without_replacement(
n_samples, min_samples, random_state=random_state
)
X_subset = X[subset_idxs]
y_subset = y[subset_idxs]
# check if random sample set is valid
if self.is_data_valid is not None and not self.is_data_valid(
X_subset, y_subset
):
self.n_skips_invalid_data_ += 1
continue
# fit model for current random sample set
if sample_weight is None:
estimator.fit(X_subset, y_subset)
else:
estimator.fit(
X_subset, y_subset, sample_weight=sample_weight[subset_idxs]
)
# check if estimated model is valid
if self.is_model_valid is not None and not self.is_model_valid(
estimator, X_subset, y_subset
):
self.n_skips_invalid_model_ += 1
continue
# residuals of all data for current random sample model
y_pred = estimator.predict(X)
residuals_subset = loss_function(y, y_pred)
# classify data into inliers and outliers
inlier_mask_subset = residuals_subset <= residual_threshold
n_inliers_subset = np.sum(inlier_mask_subset)
# less inliers -> skip current random sample
if n_inliers_subset < n_inliers_best:
self.n_skips_no_inliers_ += 1
continue
# extract inlier data set
inlier_idxs_subset = sample_idxs[inlier_mask_subset]
X_inlier_subset = X[inlier_idxs_subset]
y_inlier_subset = y[inlier_idxs_subset]
# score of inlier data set
score_subset = estimator.score(X_inlier_subset, y_inlier_subset)
# same number of inliers but worse score -> skip current random
# sample
if n_inliers_subset == n_inliers_best and score_subset < score_best:
continue
# save current random sample as best sample
n_inliers_best = n_inliers_subset
score_best = score_subset
inlier_mask_best = inlier_mask_subset
X_inlier_best = X_inlier_subset
y_inlier_best = y_inlier_subset
inlier_best_idxs_subset = inlier_idxs_subset
max_trials = min(
max_trials,
_dynamic_max_trials(
n_inliers_best, n_samples, min_samples, self.stop_probability
),
)
# break if sufficient number of inliers or score is reached
if n_inliers_best >= self.stop_n_inliers or score_best >= self.stop_score:
break
# if none of the iterations met the required criteria
if inlier_mask_best is None:
if (
self.n_skips_no_inliers_
+ self.n_skips_invalid_data_
+ self.n_skips_invalid_model_
) > self.max_skips:
raise ValueError(
"RANSAC skipped more iterations than `max_skips` without"
" finding a valid consensus set. Iterations were skipped"
" because each randomly chosen sub-sample failed the"
" passing criteria. See estimator attributes for"
" diagnostics (n_skips*)."
)
else:
raise ValueError(
"RANSAC could not find a valid consensus set. All"
" `max_trials` iterations were skipped because each"
" randomly chosen sub-sample failed the passing criteria."
" See estimator attributes for diagnostics (n_skips*)."
)
else:
if (
self.n_skips_no_inliers_
+ self.n_skips_invalid_data_
+ self.n_skips_invalid_model_
) > self.max_skips:
warnings.warn(
"RANSAC found a valid consensus set but exited"
" early due to skipping more iterations than"
" `max_skips`. See estimator attributes for"
" diagnostics (n_skips*).",
ConvergenceWarning,
)
# estimate final model using all inliers
if sample_weight is None:
estimator.fit(X_inlier_best, y_inlier_best)
else:
estimator.fit(
X_inlier_best,
y_inlier_best,
sample_weight=sample_weight[inlier_best_idxs_subset],
)
self.estimator_ = estimator
self.inlier_mask_ = inlier_mask_best
return self
def predict(self, X):
"""Predict using the estimated model.
This is a wrapper for `estimator_.predict(X)`.
Parameters
----------
X : {array-like or sparse matrix} of shape (n_samples, n_features)
Input data.
Returns
-------
y : array, shape = [n_samples] or [n_samples, n_targets]
Returns predicted values.
"""
check_is_fitted(self)
X = self._validate_data(
X,
force_all_finite=False,
accept_sparse=True,
reset=False,
)
return self.estimator_.predict(X)
def score(self, X, y):
"""Return the score of the prediction.
This is a wrapper for `estimator_.score(X, y)`.
Parameters
----------
X : (array-like or sparse matrix} of shape (n_samples, n_features)
Training data.
y : array-like of shape (n_samples,) or (n_samples, n_targets)
Target values.
Returns
-------
z : float
Score of the prediction.
"""
check_is_fitted(self)
X = self._validate_data(
X,
force_all_finite=False,
accept_sparse=True,
reset=False,
)
return self.estimator_.score(X, y)
def _more_tags(self):
return {
"_xfail_checks": {
"check_sample_weights_invariance": (
"zero sample_weight is not equivalent to removing samples"
),
}
}