Skip to content

Commit 82df489

Browse files
authoredJun 17, 2021
MNT Applies black formatting to most of the code base (scikit-learn#18948)
1 parent 0e7761c commit 82df489

File tree

513 files changed

+59810
-42580
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

513 files changed

+59810
-42580
lines changed
 

‎.github/scripts/label_title_regex.py

+2-8
Original file line numberDiff line numberDiff line change
@@ -15,15 +15,9 @@
1515
title = issue.title
1616

1717

18-
regex_to_labels = [
19-
(r"\bDOC\b", "Documentation"),
20-
(r"\bCI\b", "Build / CI")
21-
]
18+
regex_to_labels = [(r"\bDOC\b", "Documentation"), (r"\bCI\b", "Build / CI")]
2219

23-
labels_to_add = [
24-
label for regex, label in regex_to_labels
25-
if re.search(regex, title)
26-
]
20+
labels_to_add = [label for regex, label in regex_to_labels if re.search(regex, title)]
2721

2822
if labels_to_add:
2923
issue.add_to_labels(*labels_to_add)

‎asv_benchmarks/benchmarks/cluster.py

+43-39
Original file line numberDiff line numberDiff line change
@@ -10,16 +10,16 @@ class KMeansBenchmark(Predictor, Transformer, Estimator, Benchmark):
1010
Benchmarks for KMeans.
1111
"""
1212

13-
param_names = ['representation', 'algorithm', 'init']
14-
params = (['dense', 'sparse'], ['full', 'elkan'], ['random', 'k-means++'])
13+
param_names = ["representation", "algorithm", "init"]
14+
params = (["dense", "sparse"], ["full", "elkan"], ["random", "k-means++"])
1515

1616
def setup_cache(self):
1717
super().setup_cache()
1818

1919
def make_data(self, params):
2020
representation, algorithm, init = params
2121

22-
if representation == 'sparse':
22+
if representation == "sparse":
2323
data = _20newsgroups_highdim_dataset(n_samples=8000)
2424
else:
2525
data = _blobs_dataset(n_clusters=20)
@@ -29,44 +29,46 @@ def make_data(self, params):
2929
def make_estimator(self, params):
3030
representation, algorithm, init = params
3131

32-
max_iter = 30 if representation == 'sparse' else 100
32+
max_iter = 30 if representation == "sparse" else 100
3333

34-
estimator = KMeans(n_clusters=20,
35-
algorithm=algorithm,
36-
init=init,
37-
n_init=1,
38-
max_iter=max_iter,
39-
tol=-1,
40-
random_state=0)
34+
estimator = KMeans(
35+
n_clusters=20,
36+
algorithm=algorithm,
37+
init=init,
38+
n_init=1,
39+
max_iter=max_iter,
40+
tol=-1,
41+
random_state=0,
42+
)
4143

4244
return estimator
4345

4446
def make_scorers(self):
45-
self.train_scorer = (
46-
lambda _, __: neg_mean_inertia(self.X,
47-
self.estimator.predict(self.X),
48-
self.estimator.cluster_centers_))
49-
self.test_scorer = (
50-
lambda _, __: neg_mean_inertia(self.X_val,
51-
self.estimator.predict(self.X_val),
52-
self.estimator.cluster_centers_))
47+
self.train_scorer = lambda _, __: neg_mean_inertia(
48+
self.X, self.estimator.predict(self.X), self.estimator.cluster_centers_
49+
)
50+
self.test_scorer = lambda _, __: neg_mean_inertia(
51+
self.X_val,
52+
self.estimator.predict(self.X_val),
53+
self.estimator.cluster_centers_,
54+
)
5355

5456

5557
class MiniBatchKMeansBenchmark(Predictor, Transformer, Estimator, Benchmark):
5658
"""
5759
Benchmarks for MiniBatchKMeans.
5860
"""
5961

60-
param_names = ['representation', 'init']
61-
params = (['dense', 'sparse'], ['random', 'k-means++'])
62+
param_names = ["representation", "init"]
63+
params = (["dense", "sparse"], ["random", "k-means++"])
6264

6365
def setup_cache(self):
6466
super().setup_cache()
6567

6668
def make_data(self, params):
6769
representation, init = params
6870

69-
if representation == 'sparse':
71+
if representation == "sparse":
7072
data = _20newsgroups_highdim_dataset()
7173
else:
7274
data = _blobs_dataset(n_clusters=20)
@@ -76,25 +78,27 @@ def make_data(self, params):
7678
def make_estimator(self, params):
7779
representation, init = params
7880

79-
max_iter = 5 if representation == 'sparse' else 2
81+
max_iter = 5 if representation == "sparse" else 2
8082

81-
estimator = MiniBatchKMeans(n_clusters=20,
82-
init=init,
83-
n_init=1,
84-
max_iter=max_iter,
85-
batch_size=1000,
86-
max_no_improvement=None,
87-
compute_labels=False,
88-
random_state=0)
83+
estimator = MiniBatchKMeans(
84+
n_clusters=20,
85+
init=init,
86+
n_init=1,
87+
max_iter=max_iter,
88+
batch_size=1000,
89+
max_no_improvement=None,
90+
compute_labels=False,
91+
random_state=0,
92+
)
8993

9094
return estimator
9195

9296
def make_scorers(self):
93-
self.train_scorer = (
94-
lambda _, __: neg_mean_inertia(self.X,
95-
self.estimator.predict(self.X),
96-
self.estimator.cluster_centers_))
97-
self.test_scorer = (
98-
lambda _, __: neg_mean_inertia(self.X_val,
99-
self.estimator.predict(self.X_val),
100-
self.estimator.cluster_centers_))
97+
self.train_scorer = lambda _, __: neg_mean_inertia(
98+
self.X, self.estimator.predict(self.X), self.estimator.cluster_centers_
99+
)
100+
self.test_scorer = lambda _, __: neg_mean_inertia(
101+
self.X_val,
102+
self.estimator.predict(self.X_val),
103+
self.estimator.cluster_centers_,
104+
)

0 commit comments

Comments
 (0)
Please sign in to comment.