@@ -10,16 +10,16 @@ class KMeansBenchmark(Predictor, Transformer, Estimator, Benchmark):
10
10
Benchmarks for KMeans.
11
11
"""
12
12
13
- param_names = [' representation' , ' algorithm' , ' init' ]
14
- params = ([' dense' , ' sparse' ], [' full' , ' elkan' ], [' random' , ' k-means++' ])
13
+ param_names = [" representation" , " algorithm" , " init" ]
14
+ params = ([" dense" , " sparse" ], [" full" , " elkan" ], [" random" , " k-means++" ])
15
15
16
16
def setup_cache (self ):
17
17
super ().setup_cache ()
18
18
19
19
def make_data (self , params ):
20
20
representation , algorithm , init = params
21
21
22
- if representation == ' sparse' :
22
+ if representation == " sparse" :
23
23
data = _20newsgroups_highdim_dataset (n_samples = 8000 )
24
24
else :
25
25
data = _blobs_dataset (n_clusters = 20 )
@@ -29,44 +29,46 @@ def make_data(self, params):
29
29
def make_estimator (self , params ):
30
30
representation , algorithm , init = params
31
31
32
- max_iter = 30 if representation == ' sparse' else 100
32
+ max_iter = 30 if representation == " sparse" else 100
33
33
34
- estimator = KMeans (n_clusters = 20 ,
35
- algorithm = algorithm ,
36
- init = init ,
37
- n_init = 1 ,
38
- max_iter = max_iter ,
39
- tol = - 1 ,
40
- random_state = 0 )
34
+ estimator = KMeans (
35
+ n_clusters = 20 ,
36
+ algorithm = algorithm ,
37
+ init = init ,
38
+ n_init = 1 ,
39
+ max_iter = max_iter ,
40
+ tol = - 1 ,
41
+ random_state = 0 ,
42
+ )
41
43
42
44
return estimator
43
45
44
46
def make_scorers (self ):
45
- self .train_scorer = (
46
- lambda _ , __ : neg_mean_inertia (self .X ,
47
- self . estimator . predict ( self . X ),
48
- self . estimator . cluster_centers_ ))
49
- self . test_scorer = (
50
- lambda _ , __ : neg_mean_inertia (self .X_val ,
51
- self .estimator .predict ( self . X_val ) ,
52
- self . estimator . cluster_centers_ ) )
47
+ self .train_scorer = lambda _ , __ : neg_mean_inertia (
48
+ self . X , self . estimator . predict (self .X ), self . estimator . cluster_centers_
49
+ )
50
+ self . test_scorer = lambda _ , __ : neg_mean_inertia (
51
+ self . X_val ,
52
+ self . estimator . predict (self .X_val ) ,
53
+ self .estimator .cluster_centers_ ,
54
+ )
53
55
54
56
55
57
class MiniBatchKMeansBenchmark (Predictor , Transformer , Estimator , Benchmark ):
56
58
"""
57
59
Benchmarks for MiniBatchKMeans.
58
60
"""
59
61
60
- param_names = [' representation' , ' init' ]
61
- params = ([' dense' , ' sparse' ], [' random' , ' k-means++' ])
62
+ param_names = [" representation" , " init" ]
63
+ params = ([" dense" , " sparse" ], [" random" , " k-means++" ])
62
64
63
65
def setup_cache (self ):
64
66
super ().setup_cache ()
65
67
66
68
def make_data (self , params ):
67
69
representation , init = params
68
70
69
- if representation == ' sparse' :
71
+ if representation == " sparse" :
70
72
data = _20newsgroups_highdim_dataset ()
71
73
else :
72
74
data = _blobs_dataset (n_clusters = 20 )
@@ -76,25 +78,27 @@ def make_data(self, params):
76
78
def make_estimator (self , params ):
77
79
representation , init = params
78
80
79
- max_iter = 5 if representation == ' sparse' else 2
81
+ max_iter = 5 if representation == " sparse" else 2
80
82
81
- estimator = MiniBatchKMeans (n_clusters = 20 ,
82
- init = init ,
83
- n_init = 1 ,
84
- max_iter = max_iter ,
85
- batch_size = 1000 ,
86
- max_no_improvement = None ,
87
- compute_labels = False ,
88
- random_state = 0 )
83
+ estimator = MiniBatchKMeans (
84
+ n_clusters = 20 ,
85
+ init = init ,
86
+ n_init = 1 ,
87
+ max_iter = max_iter ,
88
+ batch_size = 1000 ,
89
+ max_no_improvement = None ,
90
+ compute_labels = False ,
91
+ random_state = 0 ,
92
+ )
89
93
90
94
return estimator
91
95
92
96
def make_scorers (self ):
93
- self .train_scorer = (
94
- lambda _ , __ : neg_mean_inertia (self .X ,
95
- self . estimator . predict ( self . X ),
96
- self . estimator . cluster_centers_ ))
97
- self . test_scorer = (
98
- lambda _ , __ : neg_mean_inertia (self .X_val ,
99
- self .estimator .predict ( self . X_val ) ,
100
- self . estimator . cluster_centers_ ) )
97
+ self .train_scorer = lambda _ , __ : neg_mean_inertia (
98
+ self . X , self . estimator . predict (self .X ), self . estimator . cluster_centers_
99
+ )
100
+ self . test_scorer = lambda _ , __ : neg_mean_inertia (
101
+ self . X_val ,
102
+ self . estimator . predict (self .X_val ) ,
103
+ self .estimator .cluster_centers_ ,
104
+ )
0 commit comments