-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathload_banglalekha.py
84 lines (70 loc) · 2.25 KB
/
load_banglalekha.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from __future__ import print_function
import numpy as np
import cv2
import cPickle,gzip,sys
from keras.utils import np_utils
def dataset_load(path):
if path.endswith(".gz"):
f=gzip.open(path,'rb')
else:
f=open(path,'rb')
if sys.version_info<(3,):
data=cPickle.load(f)
else:
data=cPickle.load(f,encoding="bytes")
f.close()
return data
def loadbanglalekha():
data, dataLabel, dataMarking, imageFullName = dataset_load('./FullData.pkl.gz')
Max=0
print(imageFullName[0])
for i in range(len(dataLabel)):
Max=max(Max,dataLabel[i])
''' This Portion is for Labeling and Dividing the dataset. Each sample Contains 1800 Images. Total 84 Samples '''
X_train = []
X_test = []
y_train=[]
y_test=[]
from collections import defaultdict
Dict=defaultdict(lambda:None)
#
for i in range(len(dataLabel)):
if(Dict[dataLabel[i]] is None):
Dict[dataLabel[i]]=1
else:
Dict[dataLabel[i]]=Dict[dataLabel[i]]+1
if(Dict[dataLabel[i]]>1800):
Value = data[i]
NV = cv2.resize(Value, (28, 28))
X_test.append(NV)
y_test.append(dataLabel[i])
else:
Value=data[i]
NV = cv2.resize(Value, (28, 28))
X_train.append(NV)
y_train.append(dataLabel[i])
batch_size = 128
nb_classes = 84
nb_epoch = 15
# input image dimensions
img_rows, img_cols = 28,28
# number of convolutional filters to use
nb_filters = 32
# size of pooling area for max pooling
nb_pool = 2
# convolution kernel size
kernel_size = (5, 5)
X_train=np.asarray(X_train)
X_test=np.asarray(X_test)
X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols,1)
X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols,1)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
return (X_train, Y_train), (X_test, Y_test)