forked from solana-labs/rbpf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathelf.rs
1976 lines (1780 loc) · 76.9 KB
/
elf.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! This module relocates a BPF ELF
// Note: Typically ELF shared objects are loaded using the program headers and
// not the section headers. Since we are leveraging the elfkit crate its much
// easier to use the section headers. There are cases (reduced size, obfuscation)
// where the section headers may be removed from the ELF. If that happens then
// this loader will need to be re-written to use the program headers instead.
use crate::{
aligned_memory::{is_memory_aligned, AlignedMemory},
ebpf::{self, EF_SBPF_V2, HOST_ALIGN, INSN_SIZE},
elf_parser::{
consts::{
ELFCLASS64, ELFDATA2LSB, ELFOSABI_NONE, EM_BPF, EM_SBPF, ET_DYN, R_X86_64_32,
R_X86_64_64, R_X86_64_NONE, R_X86_64_RELATIVE,
},
types::Elf64Word,
},
elf_parser_glue::{
ElfParser, ElfProgramHeader, ElfRelocation, ElfSectionHeader, ElfSymbol, GoblinParser,
NewParser,
},
error::EbpfError,
memory_region::MemoryRegion,
program::{BuiltinProgram, FunctionRegistry, SBPFVersion},
verifier::Verifier,
vm::{Config, ContextObject},
};
#[cfg(all(feature = "jit", not(target_os = "windows"), target_arch = "x86_64"))]
use crate::jit::{JitCompiler, JitProgram};
use byteorder::{ByteOrder, LittleEndian};
use std::{collections::BTreeMap, fmt::Debug, mem, ops::Range, str, sync::Arc};
/// Error definitions
#[derive(Debug, thiserror::Error, PartialEq, Eq)]
pub enum ElfError {
/// Failed to parse ELF file
#[error("Failed to parse ELF file: {0}")]
FailedToParse(String),
/// Entrypoint out of bounds
#[error("Entrypoint out of bounds")]
EntrypointOutOfBounds,
/// Invaid entrypoint
#[error("Invaid entrypoint")]
InvalidEntrypoint,
/// Failed to get section
#[error("Failed to get section {0}")]
FailedToGetSection(String),
/// Unresolved symbol
#[error("Unresolved symbol ({0}) at instruction #{1:?} (ELF file offset {2:#x})")]
UnresolvedSymbol(String, usize, usize),
/// Section not found
#[error("Section not found: {0}")]
SectionNotFound(String),
/// Relative jump out of bounds
#[error("Relative jump out of bounds at instruction #{0}")]
RelativeJumpOutOfBounds(usize),
/// Symbol hash collision
#[error("Symbol hash collision {0:#x}")]
SymbolHashCollision(u32),
/// Incompatible ELF: wrong endianess
#[error("Incompatible ELF: wrong endianess")]
WrongEndianess,
/// Incompatible ELF: wrong ABI
#[error("Incompatible ELF: wrong ABI")]
WrongAbi,
/// Incompatible ELF: wrong mchine
#[error("Incompatible ELF: wrong machine")]
WrongMachine,
/// Incompatible ELF: wrong class
#[error("Incompatible ELF: wrong class")]
WrongClass,
/// Not one text section
#[error("Multiple or no text sections, consider removing llc option: -function-sections")]
NotOneTextSection,
/// Read-write data not supported
#[error("Found writable section ({0}) in ELF, read-write data not supported")]
WritableSectionNotSupported(String),
/// Relocation failed, no loadable section contains virtual address
#[error("Relocation failed, no loadable section contains virtual address {0:#x}")]
AddressOutsideLoadableSection(u64),
/// Relocation failed, invalid referenced virtual address
#[error("Relocation failed, invalid referenced virtual address {0:#x}")]
InvalidVirtualAddress(u64),
/// Relocation failed, unknown type
#[error("Relocation failed, unknown type {0:?}")]
UnknownRelocation(u32),
/// Failed to read relocation info
#[error("Failed to read relocation info")]
FailedToReadRelocationInfo,
/// Incompatible ELF: wrong type
#[error("Incompatible ELF: wrong type")]
WrongType,
/// Unknown symbol
#[error("Unknown symbol with index {0}")]
UnknownSymbol(usize),
/// Offset or value is out of bounds
#[error("Offset or value is out of bounds")]
ValueOutOfBounds,
/// Detected sbpf_version required by the executable which are not enabled
#[error("Detected sbpf_version required by the executable which are not enabled")]
UnsupportedSBPFVersion,
/// Invalid program header
#[error("Invalid ELF program header")]
InvalidProgramHeader,
}
// For more information on the BPF instruction set:
// https://github.com/iovisor/bpf-docs/blob/master/eBPF.md
// msb lsb
// +------------------------+----------------+----+----+--------+
// |immediate |offset |src |dst |opcode |
// +------------------------+----------------+----+----+--------+
// From least significant to most significant bit:
// 8 bit opcode
// 4 bit destination register (dst)
// 4 bit source register (src)
// 16 bit offset
// 32 bit immediate (imm)
/// Byte offset of the immediate field in the instruction
const BYTE_OFFSET_IMMEDIATE: usize = 4;
/// Byte length of the immediate field
const BYTE_LENGTH_IMMEDIATE: usize = 4;
/// BPF relocation types.
#[allow(non_camel_case_types)]
#[derive(Debug, PartialEq, Copy, Clone)]
enum BpfRelocationType {
/// No relocation, placeholder
R_Bpf_None = 0,
/// R_BPF_64_64 relocation type is used for ld_imm64 instruction.
/// The actual to-be-relocated data (0 or section offset) is
/// stored at r_offset + 4 and the read/write data bitsize is 32
/// (4 bytes). The relocation can be resolved with the symbol
/// value plus implicit addend.
R_Bpf_64_64 = 1,
/// 64 bit relocation of a ldxdw instruction. The ldxdw
/// instruction occupies two instruction slots. The 64-bit address
/// to load from is split into the 32-bit imm field of each
/// slot. The first slot's pre-relocation imm field contains the
/// virtual address (typically same as the file offset) of the
/// location to load. Relocation involves calculating the
/// post-load 64-bit physical address referenced by the imm field
/// and writing that physical address back into the imm fields of
/// the ldxdw instruction.
R_Bpf_64_Relative = 8,
/// Relocation of a call instruction. The existing imm field
/// contains either an offset of the instruction to jump to (think
/// local function call) or a special value of "-1". If -1 the
/// symbol must be looked up in the symbol table. The relocation
/// entry contains the symbol number to call. In order to support
/// both local jumps and calling external symbols a 32-bit hash is
/// computed and stored in the the call instruction's 32-bit imm
/// field. The hash is used later to look up the 64-bit address
/// to jump to. In the case of a local jump the hash is
/// calculated using the current program counter and in the case
/// of a symbol the hash is calculated using the name of the
/// symbol.
R_Bpf_64_32 = 10,
}
impl BpfRelocationType {
fn from_x86_relocation_type(from: u32) -> Option<BpfRelocationType> {
match from {
R_X86_64_NONE => Some(BpfRelocationType::R_Bpf_None),
R_X86_64_64 => Some(BpfRelocationType::R_Bpf_64_64),
R_X86_64_RELATIVE => Some(BpfRelocationType::R_Bpf_64_Relative),
R_X86_64_32 => Some(BpfRelocationType::R_Bpf_64_32),
_ => None,
}
}
}
#[derive(Debug, PartialEq)]
struct SectionInfo {
name: String,
vaddr: u64,
offset_range: Range<usize>,
}
impl SectionInfo {
fn mem_size(&self) -> usize {
mem::size_of::<Self>().saturating_add(self.name.capacity())
}
}
#[derive(Debug, PartialEq)]
pub(crate) enum Section {
/// Owned section data.
///
/// The first field is the offset of the section from MM_PROGRAM_START. The
/// second field is the actual section data.
Owned(usize, Vec<u8>),
/// Borrowed section data.
///
/// The first field is the offset of the section from MM_PROGRAM_START. The
/// second field an be used to index the input ELF buffer to retrieve the
/// section data.
Borrowed(usize, Range<usize>),
}
/// Elf loader/relocator
#[derive(Debug, PartialEq)]
pub struct Executable<C: ContextObject> {
/// Loaded and executable elf
elf_bytes: AlignedMemory<{ HOST_ALIGN }>,
/// Required SBPF capabilities
sbpf_version: SBPFVersion,
/// Read-only section
ro_section: Section,
/// Text section info
text_section_info: SectionInfo,
/// Address of the entry point
entry_pc: usize,
/// Call resolution map (hash, pc, name)
function_registry: FunctionRegistry<usize>,
/// Loader built-in program
loader: Arc<BuiltinProgram<C>>,
/// Compiled program and argument
#[cfg(all(feature = "jit", not(target_os = "windows"), target_arch = "x86_64"))]
compiled_program: Option<JitProgram>,
}
impl<C: ContextObject> Executable<C> {
/// Get the configuration settings
pub fn get_config(&self) -> &Config {
self.loader.get_config()
}
/// Get the executable sbpf_version
pub fn get_sbpf_version(&self) -> &SBPFVersion {
&self.sbpf_version
}
/// Get the .text section virtual address and bytes
pub fn get_text_bytes(&self) -> (u64, &[u8]) {
let (ro_offset, ro_section) = match &self.ro_section {
Section::Owned(offset, data) => (*offset, data.as_slice()),
Section::Borrowed(offset, byte_range) => {
(*offset, &self.elf_bytes.as_slice()[byte_range.clone()])
}
};
let offset = self
.text_section_info
.vaddr
.saturating_sub(ebpf::MM_PROGRAM_START)
.saturating_sub(ro_offset as u64) as usize;
(
self.text_section_info.vaddr,
&ro_section[offset..offset.saturating_add(self.text_section_info.offset_range.len())],
)
}
/// Get the concatenated read-only sections (including the text section)
pub fn get_ro_section(&self) -> &[u8] {
match &self.ro_section {
Section::Owned(_offset, data) => data.as_slice(),
Section::Borrowed(_offset, byte_range) => {
&self.elf_bytes.as_slice()[byte_range.clone()]
}
}
}
/// Get a memory region that can be used to access the merged readonly section
pub fn get_ro_region(&self) -> MemoryRegion {
get_ro_region(&self.ro_section, self.elf_bytes.as_slice())
}
/// Get the entry point offset into the text section
pub fn get_entrypoint_instruction_offset(&self) -> usize {
self.entry_pc
}
/// Get the text section offset
#[cfg(feature = "debugger")]
pub fn get_text_section_offset(&self) -> u64 {
self.text_section_info.offset_range.start as u64
}
/// Get the loader built-in program
pub fn get_loader(&self) -> &Arc<BuiltinProgram<C>> {
&self.loader
}
/// Get the JIT compiled program
#[cfg(all(feature = "jit", not(target_os = "windows"), target_arch = "x86_64"))]
pub fn get_compiled_program(&self) -> Option<&JitProgram> {
self.compiled_program.as_ref()
}
/// Verify the executable
pub fn verify<V: Verifier>(&self) -> Result<(), EbpfError> {
<V as Verifier>::verify(
self.get_text_bytes().1,
self.get_config(),
self.get_sbpf_version(),
self.get_function_registry(),
)?;
Ok(())
}
/// JIT compile the executable
#[cfg(all(feature = "jit", not(target_os = "windows"), target_arch = "x86_64"))]
pub fn jit_compile(&mut self) -> Result<(), crate::error::EbpfError> {
let jit = JitCompiler::<C>::new(self)?;
self.compiled_program = Some(jit.compile()?);
Ok(())
}
/// Get the function registry
pub fn get_function_registry(&self) -> &FunctionRegistry<usize> {
&self.function_registry
}
/// Create from raw text section bytes (list of instructions)
pub fn new_from_text_bytes(
text_bytes: &[u8],
loader: Arc<BuiltinProgram<C>>,
sbpf_version: SBPFVersion,
mut function_registry: FunctionRegistry<usize>,
) -> Result<Self, ElfError> {
let elf_bytes = AlignedMemory::from_slice(text_bytes);
let config = loader.get_config();
let enable_symbol_and_section_labels = config.enable_symbol_and_section_labels;
let entry_pc = if let Some((_name, pc)) = function_registry.lookup_by_name(b"entrypoint") {
pc
} else {
function_registry.register_function_hashed_legacy(
&loader,
!sbpf_version.static_syscalls(),
*b"entrypoint",
0,
)?;
0
};
Ok(Self {
elf_bytes,
sbpf_version,
ro_section: Section::Borrowed(0, 0..text_bytes.len()),
text_section_info: SectionInfo {
name: if enable_symbol_and_section_labels {
".text".to_string()
} else {
String::default()
},
vaddr: ebpf::MM_PROGRAM_START,
offset_range: 0..text_bytes.len(),
},
entry_pc,
function_registry,
loader,
#[cfg(all(feature = "jit", not(target_os = "windows"), target_arch = "x86_64"))]
compiled_program: None,
})
}
/// Fully loads an ELF, including validation and relocation
pub fn load(bytes: &[u8], loader: Arc<BuiltinProgram<C>>) -> Result<Self, ElfError> {
if loader.get_config().new_elf_parser {
// The new parser creates references from the input byte slice, so
// it must be properly aligned. We assume that HOST_ALIGN is a
// multiple of the ELF "natural" alignment. See test_load_unaligned.
let aligned;
let bytes = if is_memory_aligned(bytes.as_ptr() as usize, HOST_ALIGN) {
bytes
} else {
aligned = AlignedMemory::<{ HOST_ALIGN }>::from_slice(bytes);
aligned.as_slice()
};
Self::load_with_parser(&NewParser::parse(bytes)?, bytes, loader)
} else {
Self::load_with_parser(&GoblinParser::parse(bytes)?, bytes, loader)
}
}
fn load_with_parser<'a, P: ElfParser<'a>>(
elf: &'a P,
bytes: &[u8],
loader: Arc<BuiltinProgram<C>>,
) -> Result<Self, ElfError> {
let mut elf_bytes = AlignedMemory::from_slice(bytes);
let config = loader.get_config();
let header = elf.header();
let sbpf_version = if header.e_flags == EF_SBPF_V2 {
SBPFVersion::V2
} else {
SBPFVersion::V1
};
Self::validate(config, elf, elf_bytes.as_slice())?;
// calculate the text section info
let text_section = elf.section(b".text")?;
let text_section_info = SectionInfo {
name: if config.enable_symbol_and_section_labels {
elf.section_name(text_section.sh_name())
.and_then(|name| std::str::from_utf8(name).ok())
.unwrap_or(".text")
.to_string()
} else {
String::default()
},
vaddr: if sbpf_version.enable_elf_vaddr()
&& text_section.sh_addr() >= ebpf::MM_PROGRAM_START
{
text_section.sh_addr()
} else {
text_section
.sh_addr()
.saturating_add(ebpf::MM_PROGRAM_START)
},
offset_range: text_section.file_range().unwrap_or_default(),
};
let vaddr_end = if sbpf_version.reject_rodata_stack_overlap() {
text_section_info
.vaddr
.saturating_add(text_section.sh_size())
} else {
text_section_info.vaddr
};
if (config.reject_broken_elfs
&& !sbpf_version.enable_elf_vaddr()
&& text_section.sh_addr() != text_section.sh_offset())
|| vaddr_end > ebpf::MM_STACK_START
{
return Err(ElfError::ValueOutOfBounds);
}
// relocate symbols
let mut function_registry = FunctionRegistry::default();
Self::relocate(
&mut function_registry,
&loader,
elf,
elf_bytes.as_slice_mut(),
)?;
// calculate entrypoint offset into the text section
let offset = header.e_entry.saturating_sub(text_section.sh_addr());
if offset.checked_rem(ebpf::INSN_SIZE as u64) != Some(0) {
return Err(ElfError::InvalidEntrypoint);
}
let entry_pc = if let Some(entry_pc) = (offset as usize).checked_div(ebpf::INSN_SIZE) {
if !sbpf_version.static_syscalls() {
function_registry.unregister_function(ebpf::hash_symbol_name(b"entrypoint"));
}
function_registry.register_function_hashed_legacy(
&loader,
!sbpf_version.static_syscalls(),
*b"entrypoint",
entry_pc,
)?;
entry_pc
} else {
return Err(ElfError::InvalidEntrypoint);
};
let ro_section = Self::parse_ro_sections(
config,
&sbpf_version,
elf.section_headers()
.map(|s| (elf.section_name(s.sh_name()), s)),
elf_bytes.as_slice(),
)?;
Ok(Self {
elf_bytes,
sbpf_version,
ro_section,
text_section_info,
entry_pc,
function_registry,
loader,
#[cfg(all(feature = "jit", not(target_os = "windows"), target_arch = "x86_64"))]
compiled_program: None,
})
}
/// Calculate the total memory size of the executable
#[rustfmt::skip]
#[allow(clippy::size_of_ref)]
pub fn mem_size(&self) -> usize {
let mut total = mem::size_of::<Self>();
total = total
// elf bytes
.saturating_add(self.elf_bytes.mem_size())
// ro section
.saturating_add(match &self.ro_section {
Section::Owned(_, data) => data.capacity(),
Section::Borrowed(_, _) => 0,
})
// text section info
.saturating_add(self.text_section_info.mem_size())
// bpf functions
.saturating_add(self.function_registry.mem_size());
#[cfg(all(feature = "jit", not(target_os = "windows"), target_arch = "x86_64"))]
{
// compiled programs
total = total.saturating_add(self.compiled_program.as_ref().map_or(0, |program| program.mem_size()));
}
total
}
// Functions exposed for tests
/// Validates the ELF
pub fn validate<'a, P: ElfParser<'a>>(
config: &Config,
elf: &'a P,
elf_bytes: &[u8],
) -> Result<(), ElfError> {
let header = elf.header();
if header.e_ident.ei_class != ELFCLASS64 {
return Err(ElfError::WrongClass);
}
if header.e_ident.ei_data != ELFDATA2LSB {
return Err(ElfError::WrongEndianess);
}
if header.e_ident.ei_osabi != ELFOSABI_NONE {
return Err(ElfError::WrongAbi);
}
if header.e_machine != EM_BPF && (!config.new_elf_parser || header.e_machine != EM_SBPF) {
return Err(ElfError::WrongMachine);
}
if header.e_type != ET_DYN {
return Err(ElfError::WrongType);
}
let sbpf_version = if header.e_flags == EF_SBPF_V2 {
if !config.enable_sbpf_v2 {
return Err(ElfError::UnsupportedSBPFVersion);
}
SBPFVersion::V2
} else {
if !config.enable_sbpf_v1 {
return Err(ElfError::UnsupportedSBPFVersion);
}
SBPFVersion::V1
};
if sbpf_version.enable_elf_vaddr() {
if !config.optimize_rodata {
// When optimize_rodata=false, we allocate a vector and copy all
// rodata sections into it. In that case we can't allow virtual
// addresses or we'd potentially have to do huge allocations.
return Err(ElfError::UnsupportedSBPFVersion);
}
// This is needed to avoid an overflow error in header.vm_range() as
// used by relocate(). See https://github.com/m4b/goblin/pull/306.
//
// Once we bump to a version of goblin that includes the fix, this
// check can be removed, and relocate() will still return
// ValueOutOfBounds on malformed program headers.
if elf
.program_headers()
.any(|header| header.p_vaddr().checked_add(header.p_memsz()).is_none())
{
return Err(ElfError::InvalidProgramHeader);
}
// The toolchain currently emits up to 4 program headers. 10 is a
// future proof nice round number.
//
// program_headers() returns an ExactSizeIterator so count doesn't
// actually iterate again.
if elf.program_headers().count() >= 10 {
return Err(ElfError::InvalidProgramHeader);
}
}
let num_text_sections = elf
.section_headers()
.fold(0, |count: usize, section_header| {
if let Some(this_name) = elf.section_name(section_header.sh_name()) {
if this_name == b".text" {
return count.saturating_add(1);
}
}
count
});
if 1 != num_text_sections {
return Err(ElfError::NotOneTextSection);
}
for section_header in elf.section_headers() {
if let Some(name) = elf.section_name(section_header.sh_name()) {
if name.starts_with(b".bss")
|| (section_header.is_writable()
&& (name.starts_with(b".data") && !name.starts_with(b".data.rel")))
{
return Err(ElfError::WritableSectionNotSupported(
String::from_utf8_lossy(name).to_string(),
));
}
}
}
for section_header in elf.section_headers() {
let start = section_header.sh_offset() as usize;
let end = section_header
.sh_offset()
.checked_add(section_header.sh_size())
.ok_or(ElfError::ValueOutOfBounds)? as usize;
let _ = elf_bytes
.get(start..end)
.ok_or(ElfError::ValueOutOfBounds)?;
}
let text_section = elf.section(b".text")?;
if !text_section.vm_range().contains(&header.e_entry) {
return Err(ElfError::EntrypointOutOfBounds);
}
Ok(())
}
pub(crate) fn parse_ro_sections<
'a,
T: ElfSectionHeader + 'a,
S: IntoIterator<Item = (Option<&'a [u8]>, &'a T)>,
>(
config: &Config,
sbpf_version: &SBPFVersion,
sections: S,
elf_bytes: &[u8],
) -> Result<Section, ElfError> {
// the lowest section address
let mut lowest_addr = usize::MAX;
// the highest section address
let mut highest_addr = 0;
// the aggregated section length, not including gaps between sections
let mut ro_fill_length = 0usize;
let mut invalid_offsets = false;
// when sbpf_version.enable_elf_vaddr()=true, we allow section_addr != sh_offset
// if section_addr - sh_offset is constant across all sections. That is,
// we allow sections to be translated by a fixed virtual offset.
let mut addr_file_offset = None;
// keep track of where ro sections are so we can tell whether they're
// contiguous
let mut first_ro_section = 0;
let mut last_ro_section = 0;
let mut n_ro_sections = 0usize;
let mut ro_slices = vec![];
for (i, (name, section_header)) in sections.into_iter().enumerate() {
match name {
Some(name)
if name == b".text"
|| name == b".rodata"
|| name == b".data.rel.ro"
|| name == b".eh_frame" => {}
_ => continue,
}
if n_ro_sections == 0 {
first_ro_section = i;
}
last_ro_section = i;
n_ro_sections = n_ro_sections.saturating_add(1);
let section_addr = section_header.sh_addr();
// sh_offset handling:
//
// If sbpf_version.enable_elf_vaddr()=true, we allow section_addr >
// sh_offset, if section_addr - sh_offset is constant across all
// sections. That is, we allow the linker to align rodata to a
// positive base address (MM_PROGRAM_START) as long as the mapping
// to sh_offset(s) stays linear.
//
// If sbpf_version.enable_elf_vaddr()=false, section_addr must match
// sh_offset for backwards compatibility
if !invalid_offsets {
if sbpf_version.enable_elf_vaddr() {
// This is enforced in validate()
debug_assert!(config.optimize_rodata);
if section_addr < section_header.sh_offset() {
invalid_offsets = true;
} else {
let offset = section_addr.saturating_sub(section_header.sh_offset());
if *addr_file_offset.get_or_insert(offset) != offset {
// The sections are not all translated by the same
// constant. We won't be able to borrow, but unless
// config.reject_broken_elf=true, we're still going
// to accept this file for backwards compatibility.
invalid_offsets = true;
}
}
} else if section_addr != section_header.sh_offset() {
invalid_offsets = true;
}
}
let mut vaddr_end =
if sbpf_version.enable_elf_vaddr() && section_addr >= ebpf::MM_PROGRAM_START {
section_addr
} else {
section_addr.saturating_add(ebpf::MM_PROGRAM_START)
};
if sbpf_version.reject_rodata_stack_overlap() {
vaddr_end = vaddr_end.saturating_add(section_header.sh_size());
}
if (config.reject_broken_elfs && invalid_offsets) || vaddr_end > ebpf::MM_STACK_START {
return Err(ElfError::ValueOutOfBounds);
}
let section_data = elf_bytes
.get(section_header.file_range().unwrap_or_default())
.ok_or(ElfError::ValueOutOfBounds)?;
let section_addr = section_addr as usize;
lowest_addr = lowest_addr.min(section_addr);
highest_addr = highest_addr.max(section_addr.saturating_add(section_data.len()));
ro_fill_length = ro_fill_length.saturating_add(section_data.len());
ro_slices.push((section_addr, section_data));
}
if config.reject_broken_elfs && lowest_addr.saturating_add(ro_fill_length) > highest_addr {
return Err(ElfError::ValueOutOfBounds);
}
let can_borrow = !invalid_offsets
&& last_ro_section
.saturating_add(1)
.saturating_sub(first_ro_section)
== n_ro_sections;
if sbpf_version.enable_elf_vaddr() && !can_borrow {
return Err(ElfError::ValueOutOfBounds);
}
let ro_section = if config.optimize_rodata && can_borrow {
// Read only sections are grouped together with no intermixed non-ro
// sections. We can borrow.
// When sbpf_version.enable_elf_vaddr()=true, section addresses and their
// corresponding buffer offsets can be translated by a constant
// amount. Subtract the constant to get buffer positions.
let buf_offset_start =
lowest_addr.saturating_sub(addr_file_offset.unwrap_or(0) as usize);
let buf_offset_end =
highest_addr.saturating_sub(addr_file_offset.unwrap_or(0) as usize);
let addr_offset = if lowest_addr >= ebpf::MM_PROGRAM_START as usize {
// The first field of Section::Borrowed is an offset from
// ebpf::MM_PROGRAM_START so if the linker has already put the
// sections within ebpf::MM_PROGRAM_START, we need to subtract
// it now.
lowest_addr.saturating_sub(ebpf::MM_PROGRAM_START as usize)
} else {
if sbpf_version.enable_elf_vaddr() {
return Err(ElfError::ValueOutOfBounds);
}
lowest_addr
};
Section::Borrowed(addr_offset, buf_offset_start..buf_offset_end)
} else {
// Read only and other non-ro sections are mixed. Zero the non-ro
// sections and and copy the ro ones at their intended offsets.
if config.optimize_rodata {
// The rodata region starts at MM_PROGRAM_START + offset,
// [MM_PROGRAM_START, MM_PROGRAM_START + offset) is not
// mappable. We only need to allocate highest_addr - lowest_addr
// bytes.
highest_addr = highest_addr.saturating_sub(lowest_addr);
} else {
// For backwards compatibility, the whole [MM_PROGRAM_START,
// MM_PROGRAM_START + highest_addr) range is mappable. We need
// to allocate the whole address range.
lowest_addr = 0;
};
let buf_len = highest_addr;
if buf_len > elf_bytes.len() {
return Err(ElfError::ValueOutOfBounds);
}
let mut ro_section = vec![0; buf_len];
for (section_addr, slice) in ro_slices.iter() {
let buf_offset_start = section_addr.saturating_sub(lowest_addr);
ro_section[buf_offset_start..buf_offset_start.saturating_add(slice.len())]
.copy_from_slice(slice);
}
let addr_offset = if lowest_addr >= ebpf::MM_PROGRAM_START as usize {
lowest_addr.saturating_sub(ebpf::MM_PROGRAM_START as usize)
} else {
lowest_addr
};
Section::Owned(addr_offset, ro_section)
};
Ok(ro_section)
}
/// Relocates the ELF in-place
fn relocate<'a, P: ElfParser<'a>>(
function_registry: &mut FunctionRegistry<usize>,
loader: &BuiltinProgram<C>,
elf: &'a P,
elf_bytes: &mut [u8],
) -> Result<(), ElfError> {
let mut syscall_cache = BTreeMap::new();
let text_section = elf.section(b".text")?;
let sbpf_version = if elf.header().e_flags == EF_SBPF_V2 {
SBPFVersion::V2
} else {
SBPFVersion::V1
};
// Fixup all program counter relative call instructions
let config = loader.get_config();
let text_bytes = elf_bytes
.get_mut(text_section.file_range().unwrap_or_default())
.ok_or(ElfError::ValueOutOfBounds)?;
let instruction_count = text_bytes
.len()
.checked_div(ebpf::INSN_SIZE)
.ok_or(ElfError::ValueOutOfBounds)?;
for i in 0..instruction_count {
let insn = ebpf::get_insn(text_bytes, i);
if insn.opc == ebpf::CALL_IMM
&& insn.imm != -1
&& !(sbpf_version.static_syscalls() && insn.src == 0)
{
let target_pc = (i as isize)
.saturating_add(1)
.saturating_add(insn.imm as isize);
if target_pc < 0 || target_pc >= instruction_count as isize {
return Err(ElfError::RelativeJumpOutOfBounds(i));
}
let name = if config.enable_symbol_and_section_labels {
format!("function_{target_pc}")
} else {
String::default()
};
let key = function_registry.register_function_hashed_legacy(
loader,
!sbpf_version.static_syscalls(),
name.as_bytes(),
target_pc as usize,
)?;
let offset = i.saturating_mul(ebpf::INSN_SIZE).saturating_add(4);
let checked_slice = text_bytes
.get_mut(offset..offset.saturating_add(4))
.ok_or(ElfError::ValueOutOfBounds)?;
LittleEndian::write_u32(checked_slice, key);
}
}
let mut program_header: Option<&<P as ElfParser<'a>>::ProgramHeader> = None;
// Fixup all the relocations in the relocation section if exists
for relocation in elf.dynamic_relocations() {
let mut r_offset = relocation.r_offset() as usize;
// When sbpf_version.enable_elf_vaddr()=true, we allow section.sh_addr !=
// section.sh_offset so we need to bring r_offset to the correct
// byte offset.
if sbpf_version.enable_elf_vaddr() {
match program_header {
Some(header) if header.vm_range().contains(&(r_offset as u64)) => {}
_ => {
program_header = elf
.program_headers()
.find(|header| header.vm_range().contains(&(r_offset as u64)))
}
}
let header = program_header.as_ref().ok_or(ElfError::ValueOutOfBounds)?;
r_offset = r_offset
.saturating_sub(header.p_vaddr() as usize)
.saturating_add(header.p_offset() as usize);
}
match BpfRelocationType::from_x86_relocation_type(relocation.r_type()) {
Some(BpfRelocationType::R_Bpf_64_64) => {
// Offset of the immediate field
let imm_offset = if text_section
.file_range()
.unwrap_or_default()
.contains(&r_offset)
|| sbpf_version == SBPFVersion::V1
{
r_offset.saturating_add(BYTE_OFFSET_IMMEDIATE)
} else {
r_offset
};
// Read the instruction's immediate field which contains virtual
// address to convert to physical
let checked_slice = elf_bytes
.get(imm_offset..imm_offset.saturating_add(BYTE_LENGTH_IMMEDIATE))
.ok_or(ElfError::ValueOutOfBounds)?;
let refd_addr = LittleEndian::read_u32(checked_slice) as u64;
let symbol = elf
.dynamic_symbol(relocation.r_sym())
.ok_or_else(|| ElfError::UnknownSymbol(relocation.r_sym() as usize))?;
// The relocated address is relative to the address of the
// symbol at index `r_sym`
let mut addr = symbol.st_value().saturating_add(refd_addr);
// The "physical address" from the VM's perspective is rooted
// at `MM_PROGRAM_START`. If the linker hasn't already put
// the symbol within `MM_PROGRAM_START`, we need to do so
// now.
if addr < ebpf::MM_PROGRAM_START {
addr = ebpf::MM_PROGRAM_START.saturating_add(addr);
}
if text_section
.file_range()
.unwrap_or_default()
.contains(&r_offset)
|| sbpf_version == SBPFVersion::V1
{
let imm_low_offset = imm_offset;
let imm_high_offset = imm_low_offset.saturating_add(INSN_SIZE);
// Write the low side of the relocate address
let imm_slice = elf_bytes
.get_mut(
imm_low_offset
..imm_low_offset.saturating_add(BYTE_LENGTH_IMMEDIATE),
)
.ok_or(ElfError::ValueOutOfBounds)?;
LittleEndian::write_u32(imm_slice, (addr & 0xFFFFFFFF) as u32);
// Write the high side of the relocate address
let imm_slice = elf_bytes
.get_mut(
imm_high_offset
..imm_high_offset.saturating_add(BYTE_LENGTH_IMMEDIATE),
)
.ok_or(ElfError::ValueOutOfBounds)?;
LittleEndian::write_u32(
imm_slice,
addr.checked_shr(32).unwrap_or_default() as u32,
);
} else {
let imm_slice = elf_bytes
.get_mut(imm_offset..imm_offset.saturating_add(8))
.ok_or(ElfError::ValueOutOfBounds)?;
LittleEndian::write_u64(imm_slice, addr);
}
}
Some(BpfRelocationType::R_Bpf_64_Relative) => {
// Relocation between different sections, where the target
// memory is not associated to a symbol (eg some compiler
// generated rodata that doesn't have an explicit symbol).
// Offset of the immediate field
let imm_offset = r_offset.saturating_add(BYTE_OFFSET_IMMEDIATE);
if text_section
.file_range()
.unwrap_or_default()
.contains(&r_offset)
{
// We're relocating a lddw instruction, which spans two
// instruction slots. The address to be relocated is
// split in two halves in the two imms of the
// instruction slots.
let imm_low_offset = imm_offset;
let imm_high_offset = r_offset
.saturating_add(INSN_SIZE)
.saturating_add(BYTE_OFFSET_IMMEDIATE);
// Read the low side of the address
let imm_slice = elf_bytes
.get(
imm_low_offset
..imm_low_offset.saturating_add(BYTE_LENGTH_IMMEDIATE),
)
.ok_or(ElfError::ValueOutOfBounds)?;
let va_low = LittleEndian::read_u32(imm_slice) as u64;
// Read the high side of the address
let imm_slice = elf_bytes
.get(
imm_high_offset
..imm_high_offset.saturating_add(BYTE_LENGTH_IMMEDIATE),
)
.ok_or(ElfError::ValueOutOfBounds)?;
let va_high = LittleEndian::read_u32(imm_slice) as u64;
// Put the address back together
let mut refd_addr = va_high.checked_shl(32).unwrap_or_default() | va_low;
if refd_addr == 0 {
return Err(ElfError::InvalidVirtualAddress(refd_addr));
}