-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathMLPwithBackpropagation.py
526 lines (356 loc) · 14.1 KB
/
MLPwithBackpropagation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
import numpy as np
class MultiLayerPerceptron:
def __init__(self, network_size):
"""Initialize the network
network_size=(n_input,n_hidden1,...,n_hiddenk, n_output)
n_input: number of neurons in input layer
n_hiddenj: number of hidden neurons in hidden layer j
where j=1,2,..k
n_output:number of output neurons
"""
self.indices=0
self.shape=None
self.weights=[]
#set layer values
self.indices = len(network_size) - 1
self.shape = network_size
#to store inputs and outputs after forward propagation
self._S = []
self._O = []
#to store previous weight changes for momentum term
self.prev_weight_change = []
#Initialize weights
layer_array=np.array([network_size[:-1], network_size[1:]]).T
for (layerpair_1,layerpair_2) in layer_array:
self.wi=np.zeros((layerpair_2,layerpair_1+1))
for i in range(layerpair_2):
for j in range(layerpair_1+1):
self.wi[i][j]=np.random.uniform(-1, 1)
self.weights.append(self.wi)
self.prev_weight_change.append(np.zeros((layerpair_2
,layerpair_1+1)))
#Forward Propagation
def FeedForward(self, input):
"""Feed the network with inputs"""
#Reset values
self._S = []
self._O = []
#Feedforward
for k in range(self.indices):
# Determine layer inputs
#if we are at the input layer
if k == 0:
#we also add bias
input_with_bias=np.array([np.append(i,1) for i in input])
S = self.weights[0].dot(input_with_bias.T)
#else we are the hidden layer
else:
#we take the data from previous layer
#hidden_input_with_bias
b=np.ones([1, input.shape[0]])
S = self.weights[k].dot(np.vstack([self._O[-1],b]))
#layer inputs
self._S.append(S)
#layer outputs
self._O.append(self.sigmoid(S))
#return output from the last layer
return self._O[-1].T
# Sigmoid Activation Function
def sigmoid(self,x):
return 1 / (1+ np.exp(-x))
#Derivative of Sigmoid
def sigmoid_derivative(self,x):
output = self.sigmoid(x)
return output * (1 - output)
#Backpropagation
def BackPropagation(self, input, target, eta,momentum_coef):
"""
Backpropagate the network for one epoch
eta:learning rate
momentum_coef: momentum coefficient
"""
#to store deltas in Equation (1) and (2)
delta = []
# FeedForward the network
self.FeedForward(input)
#Compute deltas
#start from Output Layer and move backwards
for k in range(self.indices)[::-1]:
#if we are at Output Layer
if k== self.indices - 1:
e= self._O[k]-target.T
#Equation (1)
output_delta=e*self.sigmoid_derivative(self._S[k])
error = 0.5*np.sum(e**2)
delta.append(output_delta)
#else we are at hidden layer
else:
# delta_h--> following layer's delta
delta_h = self.weights[k + 1].T.dot(delta[-1])
f_deriv_S=self.sigmoid_derivative(self._S[k])
#Equation (2)
#takes all the but last rows that correspond to biases
hidden_delta=delta_h[:-1, :]*f_deriv_S
delta.append(hidden_delta)
#Compute weight changes
for k in range(self.indices):
'''
*get outputs of the layers
*multiply all the outputs from previous layer
by all of the deltas from the current layer
*update the weights that connect
previous layer to the current layer
*return error
'''
if k == 0:
# if we are in input layer
#add biases also
input_with_bias=np.array([np.append(i,1) for i in input])
O= input_with_bias.T
else:
#output for previous layer
#add biases also
b=np.ones([1, self._O[k - 1].shape[1]])
O = np.vstack([self._O[k - 1],b])
#adapt index of delta for reverse order
k_delta = self.indices - 1 - k
#Equation (6)
#take current deltas and multiply it
#with previous layers' outputs
delta_x_O=delta[k_delta][np.newaxis,:,:].transpose(2, 1, 0) * O[np.newaxis,:,:].transpose(2, 0 ,1)
Delta_w_current=eta*np.sum(delta_x_O, axis = 0)
momentum_effect= momentum_coef * self.prev_weight_change[k]
#Equation(3)
#update the weights
Delta_w = Delta_w_current + momentum_effect
self.weights[k] -= eta*Delta_w
self.prev_weight_change[k] = Delta_w
#returns error
return error
def train(self, patterns, epochs, eta, mu):
#eta: learning rate
#mu: momentum coefficient
import pylab
E=np.zeros(epochs)
etas = []
etas.append(eta)
c=[]
epoch=[]
for n in range(1,epochs):
cost = 0.0
inputs=[]
targets=[]
for p in patterns:
inputs.append(p[0])
targets.append(p[1])
inputs=np.array(inputs)
targets=np.array(targets)
#cost=self.BackPropagation(inputs,targets, eta, mu)
#Update rule for Learning Rate "eta"
E[0]=self.BackPropagation(inputs,targets, eta, mu)
E_new=self.BackPropagation(inputs,targets, eta, mu)
epsilon=0.0001
if not abs(E_new-E[n-1])<epsilon: #Equation (4)
#Equation (5)
if E_new > E[n-1]:
# Decrease learning rate
eta = eta * 0.5
E_new=self.BackPropagation(inputs,targets, eta, mu)
elif E_new < E[n-1]:
#Increase learning rate
eta = eta * 1.05
etas.append(eta)
E[n] = E_new
cost =cost +self.BackPropagation(inputs,targets, eta, mu)
c.append(cost)
epoch.append(n)
threshold=0.01
#terminate if cost is less then the threshold=0.01
if cost<threshold:
break
#print learning rate list
#print etas
#Plot the cost function value vs the number of epochs
pylab.plot(epoch, c)
pylab.xlabel('Number of Epochs')
pylab.ylabel('Cost')
pylab.show()
def test(self, patterns,plot=False,input_index=False):
inputs=[]
targets=[]
outputs=[]
#get inputs and targets in given patterns
for p in patterns:
inputs.append(p[0])
targets.append(p[1])
inputs=np.array(inputs)
targets=np.array(targets)
#print inputs
if not input_index:
for i in range(len(inputs)):
print "Input:",inputs[i],'->', "Desired:",targets[i],',', "Output:",self.FeedForward(inputs)[i]
outputs.append(self.FeedForward(inputs)[i])
else:
for i in range(len(inputs)):
print "Input:",i,'->', "Desired:",targets[i],',', "Output:",self.FeedForward(inputs)[i]
outputs.append(self.FeedForward(inputs)[i])
#plotting
if plot:
import matplotlib.pyplot as plt
y=np.amax(inputs)
x=np.linspace(0, y, len(targets))
plt.scatter(x,targets, c='b')
plt.scatter(x,outputs, c='r')
plt.title('Comparison of Results')
plt.show()
# **Remark:** In the following examples the number of layers and the number of neurons in each layer can be changed.
# ## **Test the model with XOR function**
# ### **Plot cost function vs epochs.**
# ### **Terminate the update rule if the cost function reaches a certain threshold (i.e 0.01)**
# ### **Check the model with 4 inputs and write the output for each input.**
def XOR():
XOR_= [
[[0,0], [0]],
[[0,1], [1]],
[[1,0], [1]],
[[1,1], [0]]
]
# Multilayer Perceptron model with:
#2 input neurons
#2 hidden layers with 3 neurons
#1 output neuron
network_form2=(2,3,3,1)
MLP2=MultiLayerPerceptron(network_form2)
print "Performance of the MLP with 2 hidden layers with 3 neurons"
eta=0.2
mu=0.7
epochs=100000
#train
MLP2.train(XOR_,epochs,eta,mu)
#test
MLP2.test(XOR_)
# **Remark** In the results we expect not exactly the target values but close to the target values.
if __name__ == "__main__":
XOR()
# ## Use the model to approximate a non-linear function.
#
# ### Implement the algorithm
def SinApproximation():
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(578)
mu, sigma = 0, 0.1
#zero-mean Gaussian noise with standard deviation 0.1
noise1= np.random.normal(mu, sigma,100)
#inputs for train
trainSinus = np.linspace(0, 2*np.pi, 100)
#desired outputs for train
targetTrainSinus=np.sin(trainSinus+noise1)
#plot tranining noisy data
plt.plot(trainSinus,targetTrainSinus)
plt.title('Sinus Train Data Plot')
plt.show()
#inputs for test
testSinus = np.linspace(0, 2*np.pi, 25)
#desired outputs for test
targetTestSinus=np.sin(testSinus)
#plot test data points
plt.plot(testSinus,targetTestSinus)
plt.title('Sinus Test Data Plot')
plt.show()
#make patterns with inputs and targets
#for training
SinusTrainPatterns=[[[j]] for j in trainSinus]
for i in range(len(trainSinus)):
SinusTrainPatterns[i].append([targetTrainSinus[i]])
#make patterns with inputs and targets
#for testing
SinusTestPatterns=[[[j]] for j in testSinus]
for i in range(len(testSinus)):
SinusTestPatterns[i].append([targetTestSinus[i]])
#Multilayer Perceptron model with:
#1 input neuron
#1 hiddden layer with 6 neurons
#and 1 output neuron
network_form=(1,6,1)
MLP = MultiLayerPerceptron(network_form)
print "Performance of the MLP with 1 hidden layer with 6 neurons"
eta=0.002
mu=0.7
epochs=10000
# train
MLP.train(SinusTrainPatterns,epochs,eta,mu)
# test
MLP.test(SinusTestPatterns,True)
if __name__ == "__main__":
SinApproximation()
# ## **Apply the algorithm to Iris Data Set.**
# ### **There 150 sample patterns. Pick 125 for training (randomly). Test the system with the rest 25 sample patterns. **
# ### **Pick 3 outputs, one for each class of flowers
# To implement the algorithm we convert target flowers names to numeric values.
def Classify_IrisFlowers():
import csv
import random
random.seed(123)
#Load iris dataset
with open('data/iris.csv') as csvfile:
csvreader = csv.reader(csvfile)
#skips the header
next(csvreader, None)
dataset = list(csvreader)
#Change string targets to numeric as:
#Setosa=[1,0,0]
#Versicolor=[0,1,0]
#Virginica=[0,0,1]
for row in dataset:
row[4] = ["setosa", "versicolor", "virginica"].index(row[4])
row[:4] = [float(row[j]) for j in xrange(len(row))]
if row[4]==0:
row[4]=[1,0,0]
elif row[4]==1:
row[4]=[0,1,0]
else:
row[4]=[0,0,1]
#Split data to features and targets
#X is input
#y is target output
#shuffle data set
random.shuffle(dataset)
#data for training
datatrain = dataset[:125]
#data for testing
datatest = dataset[25:]
#inputs for training
train_X = [data[:4] for data in datatrain]
#targets for training
train_y = [data[4] for data in datatrain]
#inputs for testing
test_X = [data[:4] for data in datatest]
#targets for testing
test_y = [data[4] for data in datatest]
#rearrange training data form
datas=[]
for i in range(len(train_X)):
datas.append([train_X[i]])
datas[i].append(train_y[i])
# Multilayer Perceptron model with:
#4 input neurons
#1 hidden layer with 4 neurons
#and 3 output neurons
network_form=(4, 4,3)
MLP = MultiLayerPerceptron(network_form)
print "Performance of the MLP with 1 hidden layer with 4 neurons"
eta=0.02
mu=0.7
epochs=10000
# train
MLP.train(datas,epochs,eta,mu)
#rearrange testing data form
testdatas=[]
for i in range(len(test_X)):
testdatas.append([test_X[i]])
testdatas[i].append([test_y[i]])
# test
MLP.test(testdatas,input_index=True)
if __name__ == "__main__":
Classify_IrisFlowers()