forked from molecularsets/moses
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsplit_dataset.py
104 lines (87 loc) · 3.62 KB
/
split_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os
import argparse
import pandas as pd
import numpy as np
from moses.metrics import compute_intermediate_statistics
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
if v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--dir', type=str, default='./data',
help='Directory for splitted dataset')
parser.add_argument('--no_subset', action='store_true',
help='Do not create subsets for training and testing')
parser.add_argument('--train_size', type=int,
help='Size of training dataset')
parser.add_argument('--test_size', type=int,
help='Size of testing dataset')
parser.add_argument('--seed', type=int, default=0,
help='Random state')
parser.add_argument('--precompute', type=str2bool, default=True,
help='Precompute intermediate statistics')
parser.add_argument('--n_jobs', type=int, default=1,
help='Number of workers')
parser.add_argument('--device', type=str, default='cpu',
help='GPU device id')
parser.add_argument('--batch_size', type=int, default=512,
help='Batch size for FCD calculation')
return parser
def main(config):
dataset_path = os.path.join(config.dir, 'dataset_v1.csv')
repo_url = 'https://media.githubusercontent.com/media/molecularsets/moses/'
download_url = repo_url+'master/data/dataset_v1.csv'
if not os.path.exists(dataset_path):
raise ValueError(
"Missing dataset_v1.csv in {}; ".format(config.dir) +
"Please, use 'git lfs pull' or download it manually from " +
download_url
)
if config.no_subset:
return
data = pd.read_csv(dataset_path)
train_data = data[data['SPLIT'] == 'train']
test_data = data[data['SPLIT'] == 'test']
test_scaffolds_data = data[data['SPLIT'] == 'test_scaffolds']
if config.train_size is not None:
train_data = train_data.sample(
config.train_size, random_state=config.seed
)
if config.test_size is not None:
test_data = test_data.sample(
config.test_size, random_state=config.seed
)
test_scaffolds_data = test_scaffolds_data.sample(
config.test_size, random_state=config.seed
)
train_data.to_csv(os.path.join(config.dir, 'train.csv'), index=False)
test_data.to_csv(os.path.join(config.dir, 'test.csv'), index=False)
test_scaffolds_data.to_csv(
os.path.join(config.dir, 'test_scaffolds.csv'), index=False
)
if config.precompute:
test_stats = compute_intermediate_statistics(
test_data['SMILES'].values, n_jobs=config.n_jobs,
device=config.device, batch_size=config.batch_size
)
test_sf_stats = compute_intermediate_statistics(
test_scaffolds_data['SMILES'].values, n_jobs=config.n_jobs,
device=config.device, batch_size=config.batch_size
)
np.savez(
os.path.join(config.dir, 'test_stats.npz'),
stats=test_stats
)
np.savez(
os.path.join(config.dir, 'test_scaffolds_stats.npz'),
stats=test_sf_stats
)
if __name__ == '__main__':
parser = get_parser()
config, unknown = parser.parse_known_args()
if len(unknown) != 0:
raise ValueError("Unknown argument "+unknown[0])
main(config)