-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathmanual.txt
705 lines (555 loc) · 27.8 KB
/
manual.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
'''''
PyMFEM
built on mfem 4.3
'''''
PyMFEM is a python wrapper for MFEM, lightweight FEM (finite element
method) library developed by LLNL (http://mfem.org).
PyMFEM is tested with python = 3.6, 3.7, 3.8, 3.9
This wrapper is meant for a rapid-prototyping of FEM programs, and
is built using SWIG 4.0.2
With PyMFEM, a user can create C++ MFEM objects and call their
method from python. We strongly recommend visiting the MFEM web site
to find more details of the MFEM library.
-- Module structure --
<root>/mfem/ser : wrapper for serial MFEM
/par : wrapper for parallel MFEM
/common : helper modules
/Makefile_templates: example template
/examples : example scripts
-- INSTALLATION --
Please see INSTALL.txt
-- Features --
Following features are realized in PyMFEM using SWIG interface
in order to use MFEM more conveniently from python.
Some of them may be integrated to MFEM itself in future.
4-0) mfem::Array
Array<T> is a template in MFEM. PyMFEM has couple of intstatiation of
this template such as
* Array<int> -> intArray
* Array<double> -> doubleArray
(example)
>>> x = mfem.intArray(5)
>>> x.Assign(3) # set all elements to 3 (replacement of = operator)
>>> x.ToList() # convert to list
>>> for k in x:
print(k) # iterator
>>> print(x[0]) # access to element
>>> x[3] = 5 # set element
>>> x[-3] = 2 # set element counting from end
>>> print(x[3:]) # slice returns subarray. Note memory is not copyed
# subarray does not own data
Array<T>::Array accepts list or tuple
(example)
>>> x = mfem.doubleArray([1,2,3])
>>> x.ToList()
[1.0, 2.0, 3.0]
Array<T>.Append accepts list or tuple
>>> x = mfem.doubleArray([1,2,3])
>>> x.Append([4,5,6])
6
mfem.intArray provides an access to int *. For this, we need to
pass (int *, length) as a list/tuple.
>>> parts = mesh.GeneratePartitioning(3)
>>> mfem.intArray([parts, mesh.GetNE()]) <-- int * and length
Some Array<T> is not explicitly instanciated in Array.cpp. For these type,
the implementation of some methods, such as Print, Sort etc are not avaialbe.
As a workaround, GetDataArray is added to provide a numpy array view of underlying \
memory section. For example, one can do sort of Array<unsigned int> as follows.
>>> v = mfem.uintArray(10)
>>> v.GetDataArray()[:] = (1, 105, 20, 3, 50, 4, 2, 15, 8)
>>> v.GetDataArray()[:] = np.sort(a.GetDataArray())
>>> v.ToList()
[1, 2, 3, 4, 8, 15, 20, 50, 105, 300]
4-1) mfem::Vector
Constructor using python list or NumPy array:
v = mfem.Vector([1,2,3.])
v = mfem.Vector(np.array([1,2,3,4.])
Note that when list is passed. Contents of list is copied and data is
owned by mfem::Vector. When a NumPy array is passed, data is NOT copied.
mfem::Vector holds the passed NumPy array as _link_to_data attribute,
so that python does not garbage collect the NumPy array until mfem::Vector
is deleted.
Constructor also get SWIG object to <double *>. However, memory
management for this pointer object is left to a user.
Array element access:
reading element: print v[0]
element assignment v[0] = 3
negative index is also possible; v[-1] is equivalent to v[size-1]
Assign method: operator= is replaced by Assign method
v.Assign(1.) (equivalent to v=1 in c++)
v.Assign(<some mfem::Vector>) (copy data from mfem vector)
v.Assign(np.array([1., 2., 3.]) (copy data from np.array)
Data Access as NumPy: v.GetDataArray()
Vector works also in for loop.
(example)
>>> vec = mfem.Vector([1,2,3])
>>> for x in vec:
print(x)
In c++, a new partial view to existing vector is acquired as
Vector v(vec.GetData() + sc, sc);
In Python, one can call either
v = mfem.Vector(vec, offset, size)
or use slice
vec[offset:offset+size] # more python-ish...
Note that this slice returns mere new memory view, sharing the same vector
object. However, be careful that, when slice requires non-contiguous memory
view, PyMFEM returns a new vector object NOT sharing the memory.
If one wants to get the access to a memory view with non-trivial striding,
use GetDataArray discussed below to get a NumPy array pointing the
memory allocated for Vector, and use slice of the newly created NumPy object.
Vector::GetDataArray returns NumPy object viewing the data stored in C++ Vector
object. Note that the returned NumPy array does not own the data.
Vector::WriteToStream(IOString, width=8) writes data to io.IOString
ex)
v = mfem.Vector([1,2,3])
o = io.StringIO()
length = v.WriteToStream(o)
print(o.getvalue())
4-2) mfem::Coefficient
## Using Python function for function coefficient
PyCoefficient is derived from FunctionCoefficient
PyCoefficientT is time-dependent version
VectorPyCoefficient is derived from VectorFunctionCoefficient
VectorPyCoefficientT is time-dependent version
When using these class, inherit one of them and define
cls::EvalValue method as follows
class Jt(mfem.VectorPyCoefficient):
def EvalValue(self, x):
return [0.,0., np.cos(np.abs(x[2]-0.03)/0.03*np.pi/2)]
class Sigma(mfem.PyCoefficient):
def EvalValue(self, x):
return 0.01 // need to return
then use it
Cof_Jt = Jt(3) // VectorPyCoefficient constructor need sdim
dd = mfem.VectorFEBoundaryTangentLFIntegrator(Cof_Jt);
If one wants to call Eval with a transformation object and
an integration point, and one can inherit PyCoefficientBase
(or their Vector/Matrix version) and overwrite Eval methods.
These classes are defined as a director classes in c++.
Therefore, if one overwrite Eval method, SWIG reroute the
call to the Python side.
V/M ConstantCoefficeint supports natural python object as input
MatrixConstantCoefficient([[1,2], [2,3]])
VectorConstantCoefficient([1,2,3])
Note: the argument is first tested if it can be converted using
np.array(x, dtype=float)
## Just-in-time compilation of Python coefficient
Function coefficient written in Python can be JITed using Numba. To use
this feature, one can either use mfem.jit.* decorators or instantiate
NumberFunction (or Vector/MatrixNumbaFunction) and call GenerateCoefficient
in most case, the first one is convenient.
mfem.jit decorators uses the following syntax
sdim = mesh.SpaceDimension()
@scalar(td=False, params={}, complex=False, dependency=None, interface='simple',
sdim=None, debug=False)
@vector(vdim=None, shape=None, td=False, params={}, complex=False, dependency=None,
interface='simple', sdim=None, debug=False)
@matrix(height=None, width=None, shape=None, td=False, params={}, complex=False, dependency=None,
interface='simple', sdim=None, debug=False)
shape: shape of return value (following form can be used too)
vdim: length of vector coefficient
height/width: height and width of matrix coefficient
td: time-dependence (False: stationary, True: time-dependent
complex: complex coefficient. if ture, it returns a tuple of coefficient
depenency: dependency to other coefficient
interface: calling proceture
'simple': vector/matric function returns the result by value more pythonic.
'c++': vector/matric function returns the result by parameter like C++
other options: one can pass a tuple of (caller, signature) pair to create a custom
interface
sdim: space dimension (optional)
debug: extra debug print
-- Example (1) --
(Using jit decorator -- see more example in ex1 and ex24)
>>> @mfem.jit.scalar()
def c12(ptx):
return s_func0(ptx[0], ptx[1], ptx[2])
For vector/matrxi, we can use the following two forms of arguments
>>> @mfem.jit.vector(shape=(3,))
def f_exact(x):
return np.array((1 + kappa**2)*sin(kappa * x[1])
(1 + kappa**2)*sin(kappa * x[2])
(1 + kappa**2)*sin(kappa * x[0]))
>>> @mfem.jit.vector(shape=(3,), interface="c++")
def f_exact(x, out):
out[0] = (1 + kappa**2)*sin(kappa * x[1])
out[1] = (1 + kappa**2)*sin(kappa * x[2])
out[2] = (1 + kappa**2)*sin(kappa * x[0])
>>> x.ProjectCoefficient(f_exact)
-- Example (2) : complex coefficient
mfem.jited coefficient can return a complex number. It will create
two coefficients for real and imaginary
>>> @mfem.jit.scalar(complex=True)
def c12(ptx):
return ptx[0] + 1j*ptx[1]
>>> x.ProjectCoefficient(c12.real) # project real coefficient
>>> x.ProjectCoefficient(c12.imag) # project imaginary coefficient
-- Example (3) : dependency
mfem.jited coefficient can use other coefficient in the funciton
>>> @mfem.jit.vector(vdim=3, complex=True, dependency=(E, B))
def P(ptx):
return E.dot(B)
(Using NumbaFunction object)
For example, to use Numba compiled function, one can use
GenerateCoefficient mehtod in NumberFunction class as follows.
>>> from numba import cfunc, carray
>>> from mfem.coefficient import scalar_sig
>>> sdim = mesh.SpaceDimension()
>>> vdim = mesh.Dimension()
>>> @cfunc(scalar_sig)
def s_func(ptx, sdim):
... return 2*ptx[0]
>>> c = NumbaFunction(s_func, sdim).GenerateCoefficient()
Please look test_numba.py and ex3.py for more examples
4-3) mfem::GridFunction
GetNodalValues(i) will perform GetNodalValue(Vector(), i) and
return NumPy array of Vector()
= operator is renamed as Assign method.
(python)
g = mfem.GridFunction(fespace)
g.Assign(0)
(c++)
GridFunction *g = new GridFunction(&fespace);
g = 0;
GridFunction(FiniteElementSpace *f, double *data) is extended to
support offsets
v = mfem.GridFunction(fec, <pointer to double>, offset)
so that following can be wrapped
GridFunction(fes, vec.GetData() + sc)
the same is used for ParGridFunction
GridFunction::Save(std::ostream &out) is wrapped as Save(filename, precision)
QuadratureFunction::Save(std::ostream &out) is wrapped as Save(filename, precision=8)
GridFunction::WriteToStream(IOString) writes data to io.IOString
ex)
mesh = mfem.Mesh(3)
fec = mfem.H1_FECollection(1)
fes = mfem.FiniteElementSpace(mesh, fec)
x = mfem.GridFunction(fes)
x.Assign(0.0)
o = io.StringIO()
l1 = mesh.WriteToStream(o)
l2 = x.WriteToStream(o)
print('result: ', o.getvalue())
Those methods which take a pointer to IntegrationRule array (
const IntegrationRule *irs[]) accept a list of IntegrationRule
ex)
coeff = mfem.ConstantCoefficient(1.0)
irs = [mfem.IntRules.Get(i, order)
for i in range(mfem.Geometry.NumGeom)]
err = x.ComputeL2Error(coeff, irs)
4-4) mfem::Mesh
Simple mesh generator is wrapped as follows
mesh = mfem.Mesh(10, 10, "TRIANGLE")
mesh = mfem.Mesh(10, 10, "QUADRILATERAL")
mesh = mfem.Mesh(10, 10, 10, "HEXAHEDRON")
mesh = mfem.Mesh(10, 10, 10, "TETRAHEDRON")
Wrapper of following methods are customized to
return either python list object or tuple of lists or int
GetBdrElementVertices(i)
GetElementVertices(i)
GetElementVEdges(i)
GetBdrElementEdges(i)
GetFaceEdges(i)
GetEdgeVertices(i)
GetFaceVertices(i)
GetElementFaces(i)
GetBdrElementAdjacentElement()
GetFaceInfos()
These methods returns an IsoparametricTransformation object
GetElementTransformation(i)
GetBdrElementTransformation(i)
GetFaceTransformation(i)
GetEdgeTransformation(i)
pointer passing in following methods are returned
as tuple
elem1, elem2 = mesh.GetFaceElements(i)
Additional constructors:
# this one takes file name as string
Mesh(const char *mesh_file, int generate_edges, int refine,
bool fix_orientation = True)
# this one takes element type as string
Mesh(int nx, int ny, int nz, const char *type, int generate_edges = 0,
double sx = 1.0, double sy = 1.0, double sz = 1.0)
Mesh(int nx, int ny, const char *type, int generate_edges = 0,
double sx = 1.0, double sy = 1.0)
(note) an issue is Element::Type (c++ enum) is treated as int in
python, and therefore, the wrapper can not distinguish it from the
following constructor.
Mesh(int _Dim, int NVert, int NElem, int NBdrElem = 0,
int _spaceDim= -1)
GetVertexArray
GetVertexArray(i) : returns i-th vertex as numpy array
GetVertexArray() : returns all vertices as 2D numpy array
GetElementCenterArray(i): returns i-th vertex element center as numpy array
as NumPy object
GetBdrElementFace(i) returns tuple
GetBdrArray(int idx) returns array of boundary element whose BdrAttribute is idx
GetBdrAttributeArray() returns array of boundary attribute
GetAttributeArray() returns array of attribute
GetDomainArray(int idx) returns array of element whose Attribute is idx
SwapNodes returns nodes and owns_nodes as follows.
nodes, owns_nodes = mesh.SwapNodes(nodes, owns_nodes)
nodes, owns_nodes = pmesh.SwapNodes(nodes, owns_nodes)
Following method filename
virtual void PrintXG(std::ostream &out = mfem::out) const;
virtual void Print(std::ostream &out = mfem::out) const { Printer(out); }
void PrintVTK(std::ostream &out);
Following method accept empty argument (=std:cout) and filename
virtual void PrintInfo(std::ostream &out = mfem::out)
FindPoints receive only one argument (points to look for) and returns
count, element_id, integration_points. Note points are row order. For example,
>>> count, elem_ids, int_pts = mesh.FindPoint([1,2,3], [3,4,5], [4,5,6], [7,8,9]],
warn=True, int_trans=None)
will look for 4 points.
GetScaledJacobian(i, sd) returns minimum Jacobian computed on in each element.
CaltecianPartitioning(nxyz, return_list=False)
* accept tuple/list as nxyz
* return_list = True will return a list to represent the patitioning
by default it returns SWIG native int * object.
Mesh::WriteToStream(IOString) writes data to io.IOString
ex)
v = mfem.Mesh(3)
o = io.StringIO()
length = v.WriteToStream(o)
print('data: ', o.getvalue())
AddVertex accepts either numpy float array, mfem.Vector or list/tuple
AddQuad (and other similar methods) accepts either numpy int32 array, Array<int> or list/tuple
4-5) sparsemat
RAP has two different implementations. One accept three references.
The other accept a pointer as a third argument, instead.
These two are not distinguishable from python. So, RAP_P and
RAP_R are added. P indicates that the third argument is a pointer.
Add functions are accessed as add_sparse.
GetIArray, GetJArray, and GetDataArray. These methods give NumPy
array of CSR matrix data. It borrows data from SparseMatrix.
Therefore, be careful not to access after the matrix is freed.
Following method accept empty argument (=std:cout) and filename
void Print(std::ostream &out = mfem::out, int width_ = 4) const;
void PrintMatlab(std::ostream &out = mfem::out) const;
void PrintMM(std::ostream &out = mfem::out) const;
void PrintCSR(std::ostream &out) const;
void PrintCSR2(std::ostream &out) const;
void PrintInfo(std::ostream &out) const;
Constructor accept NumPy array
indptr = np.array([0, 2, 3, 6], dtype=np.int32)
indices = np.array([0, 2, 2, 0, 1, 2], dtype=np.int32)
data = np.array([1, 2, 3, 4, 5, 6], dtype=float)
mat = mfem.SparseMatrix([indptr, indices, data, 3,3])
4-6) densemat
Add functions are accessed as add_dense.
elements are accessed similar to a regular python array
Assign method replaces = operator
GetDataArray returns a memory view to the internal data as NumPy array.
(example)
x = DenseMatrix(3, 3)
x.Assign(0)
v = Vector([1,2,3,4,5,6,7,8,9])
m = DenseMatrix(v.GetData(), 3, 3)
x.Assign(m)
x[i,j] = xxx
print x[i,j]
# Assigning (copy) from NumPy array
m = DenseMatrix(3,3)
m.Assign(np.arange(9.).reshape(3,3)) # <-- In this case,
# wrapper automatically tranpose
# input matrix so that data is
# column order. The same is done
# in GetDataArray()
x = DenseTensor(2, 3, 5)
x.Assign(1) # set all 1
x[5] # returns DenseMatrix with col=2 and row=3
print x[1,2,3]
x[1,2,3]=3
# NOTE the index order is different in the NumPy array returned
# by DenseTensor::GetDataArray. This is because, we want
# the major column access work in the same way in C and Python
# x[3].GetDataArray() == x.GetDataArray()[3]
x[1 2,3] = x.GetDataArray()[3,1,2]
# tensor assignment behaves as expected.
t = np.arange(30).reshape(2,3,5)
x.Assign(t) # tensor assignment
# because of the same reason as DenseMatrix, this operation changes
# internall array element order
t.flatten() ---> [0, 1, 2, 3, 4...]
print(mfem.Vector(m.Data(), 30).GetDataArray()) ---> [0, 15, 5,,,,]
Note that internally MFEM DenseMatrix is column major, while NumPy
is row major. Therefore,
v = Vector([1,2,3,4,5,6,7,8,9])
m = DenseMatrix(v.GetData(), 3, 3)
will make
[1 4,7]
[2,5,8]
[3,6,9],
whereas
numpy.arange(9).reshape(3,3)
would give you
[1 2,3]
[4,5,6]
[7,8,9].
4-7) estimators
ZienkiewiczZhuEstimator and L2ZienkiewiczZhuEstimator
have two versions of constructor. flux_fes
can be either passed as pointer or reference. In python class, you
need to pass 5th argument if you want to pass flux_fes as
reference. By default, own_flux_fes is False, so a user
can skip passing this keyword when passing by reference
pass by reference
ZienkiewiczZhuEstimator(integ, sol, flux_fes, own_flux_fes = False)
pass by pointer
ZienkiewiczZhuEstimator(integ, sol, flux_fes, own_flux_fes = True)
pass by reference
L2ZienkiewiczZhuEstimator(integ, sol, flux_fes, own_flux_fes = False)
pass by pointer
L2ZienkiewiczZhuEstimator(integ, sol, flux_fes, own_flux_fes = True)
4-8) operator
PyTimeDependentOperatorBase and PyOperatorBase is added to
allow for implementing those operator in python. A user
can inherit these class and overwrite Mult in python. See
ex9.py for example.
4-9) ode
Step uses reference passing for t and dt. To get the result
from this method, use
t, dt = ode_solver.Step(u, t, dt)
4-10) hypre
Following methods are added through SWIG interface
HypreParVector::GetPartitioningArray returns Partitioning as NumPy array
HypreParMatrix::GetColPartArray returns ColPart as NumPy array
HypreParMatrix::GetRowPartArray returns RowPart as NumPy array
HypreParMatrix::GetCooDataArray returns data to construct local coo matrix
mfem.common.chypre
This module defines CHypreVec and CHhypreMat classes. Those are classes
supports...
1) create HypreParCSR and HypreParVector from scipy.sparse.csr_matrix
and numpy.ndarray, respectively
2) convert HypreMatrix/Vector to NumPy array or scipy.sparse matrix
3) handle complex number using a pair of Hypre object (real and imag)
Class methods of these classes are named in a similar way to NumPy array.
4-11) socketstream
socketstream in PyMFEM has send_text and send_solution. These
method also send endl and flush. One can use them as follows
(example)
sock = mfem.socketstream("localhost", 19916)
sock.precision(8)
sock.send_text("parallel " + str(num_procs) + " " + str(myid))
sock.send_solution(pmesh, x)
socketstream object support << operator partially, but not works
perfectly. This was done by adding __lshift__ and other methods to
socketstream class in .i file. We don't want to wrap the whole
iostream. Instead, we are adding methods used in examples such as
precision. Also, note that sock << flush in c++ should be rephrased
sock.flush()
4-12) std::ostream& and std::istream&
methods which takes std::ostream& are wrapped so that it accept
either
1) filename
2) compressed filename (when the filename ends with .gz)
3) mfem.STDOUT
4) StringIO
(example)
mesh.PrintVTK("mesh.vtk", 1)
mesh.Print(mfem.STDOUT)
#
gf.SaveVTK("gf.vtk", "data", 1)
gf.Save("data.gf")
# save multile gf to one StringIO....
from io import StringIO
output = StringIO()
output.precision = 8
gf.Save(output)
gf2.Save(output)
Some methos are wrapped so that it runs without argument. In this
case, data is passed to STDOUT.
Not all methods are wrapped yet. Look for OSTREAM_ADD_DEFAULT_FILE
(or OSTREAM_ADD_DEFAULT_STDOUT_FILE) macros in the SWIG interface
file to find which method is wrapped.
(example)
SparseMat::PrintInfo
STable3D::Print
std::istream & is also wrapped in a similar way
1) filename
2) compressed filename (when the filename ends with .gz)
3) StringIO
See test/test_gz.py to see an example
4-13) mfem::table
GetRowList returns a version of GetRow which returns Python
list instead of int pointer.
4-14) mfem::ParMesh
ParMesh(comm, filename)
load parallel file
ParPrintToFile(filename)
write parallel file
4-14) mfem::ParGridFunction
ParGridFunction(pmesh, filename) : read parallel GridFunction
example to read ParMesh and ParGridFunction:
smyid = '{:0>6d}'.format(myid) # myid = MPI.COMM_WORLD.rank
mesh1 = mfem.ParMesh(comm, 'wg.mesh.'+smyid)
mesh1.ReorientTetMesh()
x = mfem.ParGridFunction(mesh1, 'wg.gf.'+smyid)
4-15) mfem:BlockNonlinearForm, mfem:ParBlockNonlinearForm
Constructor accept tuple/list of (Par)FiniteElementSpace
R_space = mfem.FiniteElementSpace(...)
W_space = mfem.FiniteElementSpace(...)
spaces = [R_space, W_space]
mfem.BlockNonlinearForm(spaces)
note that user must pay attention that Python does not
garbage collect spaces. (this will be fix in future)
Similarly, mfem::(Par)BlockNonlinearForm::SetEssentialBC()
accept tuple/list of intArray (= wrapped Array<int>) and
mfem::Vector
4-16) mfem:ComplexOperator
ownReal, onwImag for Constructor is optional.
hermitian keyword is used to specify the type of matrix
op_complex = ComplexOperator(M1, M2, ownReal=False, ownImag=False,
hermitian=True)
hermitian = False results in BLOCK_SYMMETRIC format
Returned ComplexOperator hold the passed real and imag operators
so that Python does not garbage collect them.
If thisown of real/imag operators are 1, a user has an option to
set ownReal, ownImag.
4-17) strumpack
if you have strumpack linked with MFEM, you can enable wrapper by
ENABLE_STRUMPACK option in make
make ENABLE_STRUMPACK=1
make ENABLE_STRUMPACK=1 STRUMPACK_INCLUDE=${HOME}/sandbox/include
Here is sample script to use strumpack from PyMFEM (only in mfem.par)
import mfem.par.strumpack as strmpk
Arow = strmpk.STRUMPACKRowLocMatrix(A)
args = ["--sp_hss_min_sep_size", "128", "--sp_enable_hss"]
strumpack = strmpk.STRUMPACKSolver(args, MPI.COMM_WORLD)
strumpack.SetPrintFactorStatistics(True)
strumpack.SetPrintSolveStatistics(False)
strumpack.SetKrylovSolver(strmpk.KrylovSolver_DIRECT);
strumpack.SetReorderingStrategy(strmpk.ReorderingStrategy_METIS)
strumpack.SetMC64Job(strmpk.MC64Job_NONE)
# strumpack.SetSymmetricPattern(True)
strumpack.SetOperator(Arow)
strumpack.SetFromCommandLine()
strumpack.Mult(B, X);
4-18) OperatorHandle
It is often required to convert Operator Handle to a specific operaotr class
using OperatorHandle::As <T>. handle.hpp defines also Is, Get, Reset,
and ConvertFrom. These templates are instantiated for SparseMatrix,
HypreParMatrix, and PetscParMatrix. Instatiated methods have class name
appeded to its method name. For example, in ex1.py, it is use as
follows.
A = mfem.OperatorPtr()
<....>
AA = A.AsSparseMatrix()
M = mfem.GSSmoother(AA)
mfem.PCG(A, M, B, X, 1, 200, 1e-12, 0.0)
-- Known issues --
PyMFEM is an on-going effort. Not all MFEM functionality is properly
wrapped yet. Presently all serial/parallel examples available in
the top-level mfem/example directory are rewritten in python.
This would be sufficient for certain projects, but for other projects,
you may find various features are missing. Please inform us if you
notice something missing.
1) t*.hpp files are not wrapped
3) Memory management.
python uses garbage collection. Since wrapper does not know
exactly how objects are used in c++ layer, MFEM object may be
collected before being ready to be freed. We are addressing
this by adjusting thisown flag or %newobject directive. This
needs to be done method by method, and not yet completed.
5) SuperLU and PETSc are not supported.
*This work is supported by US DoE contract DE-FC02-99ER54512