-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathschwarz.cpp
1250 lines (1151 loc) · 38.1 KB
/
schwarz.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "schwarz.hpp"
// Some utility functions
bool is_a_patch(int iv, Array<int> patch_ids)
{
return (patch_ids.FindSorted(iv) != -1);
}
bool owned(int tdof, int * offs)
{
return (offs[0] <= tdof && tdof < offs[1]);
}
void GetColumnValues(const int tdof_i, const Array<int> & tdof_j, SparseMatrix & diag,
SparseMatrix & offd, const int * cmap, const int * row_start, Array<int> &cols, Array<double> &vals)
{
int row = tdof_i - row_start[0];
int row_size = diag.RowSize(row);
int *col = diag.GetRowColumns(row);
double *cval = diag.GetRowEntries(row);
for (int j = 0; j < row_size; j++)
{
int icol = col[j]+ row_start[0];
int jj = tdof_j.FindSorted(icol);
if (jj != -1)
{
double dval = cval[j];
cols.Append(jj);
vals.Append(dval);
}
}
int crow_size = offd.RowSize(row);
int *ccol = offd.GetRowColumns(row);
double *ccval = offd.GetRowEntries(row);
for (int j = 0; j < crow_size; j++)
{
int icol = cmap[ccol[j]];
int jj = tdof_j.FindSorted(icol);
if (jj != -1)
{
double dval = ccval[j];
cols.Append(jj);
vals.Append(dval);
}
}
}
int GetNumColumns(const int tdof_i, const Array<int> & tdof_j, SparseMatrix & diag,
SparseMatrix & offd, const int * cmap, const int * row_start)
{
int row = tdof_i - row_start[0];
int row_size = diag.RowSize(row);
int *col = diag.GetRowColumns(row);
int k = -1;
for (int j = 0; j < row_size; j++)
{
int icol = col[j]+ row_start[0];
int jj = tdof_j.FindSorted(icol);
if (jj != -1)
{
k++;
}
}
int crow_size = offd.RowSize(row);
int *ccol = offd.GetRowColumns(row);
for (int j = 0; j < crow_size; j++)
{
int icol = cmap[ccol[j]];
int jj = tdof_j.FindSorted(icol);
if (jj != -1)
{
k++;
}
}
return k;
}
void GetOffdColumnValues(const Array<int> & tdof_i, const Array<int> & tdof_j, SparseMatrix & offd, const int * cmap,
const int * row_start , SparseMatrix * PatchMat)
{
int ndof = tdof_i.Size();
for (int i = 0; i<ndof; i++)
{
int row = tdof_i[i] - row_start[0];
int row_size = offd.RowSize(row);
int *ccol = offd.GetRowColumns(row);
double *ccval = offd.GetRowEntries(row);
for (int j = 0; j < row_size; j++)
{
int icol = cmap[ccol[j]];
int jj = tdof_j.FindSorted(icol);
if (jj != -1)
{
double dval = ccval[j];
PatchMat->Set(i,jj,dval);
}
}
}
}
SparseMatrix * GetLocalRestriction(const Array<int> & tdof_i, const int * row_start,
const int num_rows, const int num_cols)
{
SparseMatrix * R = new SparseMatrix(num_cols,num_rows);
for (int i=0; i<num_cols; i++)
{
int ii = tdof_i[i] - row_start[0];
R->Set(i,ii,1.0);
}
R->Finalize();
return R;
}
void GetLocal2GlobalMap(const Array<int> & tdof_i, const int * row_start,
const int num_rows, const int num_cols, Array<int> & l2gmap)
{
l2gmap.SetSize(num_cols);
for (int i=0; i<num_cols; i++)
{
int ii = tdof_i[i] - row_start[0];
l2gmap[i] = ii;
}
}
void GetArrayIntersection(const Array<int> & A, const Array<int> & B, Array<int> & C)
{
int i = 0, j = 0;
while (i != A.Size() && j != B.Size())
{
if (A[i] == B[j])
{
C.Append(A[i]);
i++;
j++;
}
else if (A[i] > B[j])
{
j++;
}
else
{
i++;
}
}
}
VertexPatchInfo::VertexPatchInfo(ParMesh *pmesh_, int ref_levels_)
: pmesh(pmesh_), ref_levels(ref_levels_)
{
int dim = pmesh->Dimension();
// 1. Define an auxiliary parallel H1 finite element space on the parallel mesh.
FiniteElementCollection * aux_fec = new H1_FECollection(1, dim);
ParMesh * aux_pmesh = new ParMesh(*pmesh);
ParFiniteElementSpace * aux_fespace = new ParFiniteElementSpace(aux_pmesh, aux_fec);
int mycdofoffset = aux_fespace->GetMyDofOffset(); // dof offset for the coarse mesh
// 2. Store the cDofTrueDof Matrix. Required after the refinements
HypreParMatrix *cDofTrueDof = new HypreParMatrix(*aux_fespace->Dof_TrueDof_Matrix());
// 3. Perform the refinements (if any) and Get the final Prolongation operator
HypreParMatrix *Pr = nullptr;
for (int i = 0; i < ref_levels; i++)
{
const ParFiniteElementSpace cfespace(*aux_fespace);
aux_pmesh->UniformRefinement();
// Update fespace
aux_fespace->Update();
OperatorHandle Tr(Operator::Hypre_ParCSR);
aux_fespace->GetTrueTransferOperator(cfespace, Tr);
Tr.SetOperatorOwner(false);
HypreParMatrix *P;
Tr.Get(P);
if (!Pr)
{
Pr = P;
}
else
{
Pr = ParMult(P, Pr);
}
}
// if (Pr) Pr->Threshold(0.0);
// 4. Get the DofTrueDof map on this mesh and convert the prolongation matrix
// to correspond to global dof numbering (from true dofs to dofs)
HypreParMatrix *DofTrueDof = aux_fespace->Dof_TrueDof_Matrix();
HypreParMatrix *A = nullptr;
if (Pr)
{
A = ParMult(DofTrueDof, Pr);
}
else
{
// If there is no refinement then the prolongation is the identity
A = DofTrueDof;
}
HypreParMatrix * cDofTrueDofT = cDofTrueDof->Transpose();
HypreParMatrix *B = ParMult(A, cDofTrueDofT);
delete cDofTrueDofT;
// 5. Now we compute the vertices that are owned by the process
SparseMatrix cdiag, coffd;
cDofTrueDof->GetDiag(cdiag);
Array<int> cown_vertices;
int cnv = 0;
for (int k = 0; k < cdiag.Height(); k++)
{
int nz = cdiag.RowSize(k);
int i = mycdofoffset + k;
if (nz != 0)
{
cnv++;
cown_vertices.SetSize(cnv);
cown_vertices[cnv - 1] = i;
}
}
// 6. Compute total number of patches
MPI_Comm comm = pmesh->GetComm();
mynrpatch = cown_vertices.Size();
// Compute total number of patches.
MPI_Allreduce(&mynrpatch, &nrpatch, 1, MPI_INT, MPI_SUM, comm);
patch_global_dofs_ids.SetSize(nrpatch);
// Create a list of patches identifiers to all procs
int num_procs, myid;
MPI_Comm_size(comm, &num_procs);
MPI_Comm_rank(comm, &myid);
int count[num_procs];
MPI_Allgather(&mynrpatch, 1, MPI_INT, &count[0], 1, MPI_INT, comm);
int displs[num_procs];
displs[0] = 0;
for (int i = 1; i < num_procs; i++)
{
displs[i] = displs[i - 1] + count[i - 1];
}
int * cownvert_ptr = nullptr;
int * dof_rank_id_ptr = nullptr;
Array<int> dof_rank_id;
if (cown_vertices.Size() >0)
{
cownvert_ptr = &cown_vertices[0];
dof_rank_id.SetSize(cown_vertices.Size());
dof_rank_id = myid;
dof_rank_id_ptr = &dof_rank_id[0];
}
// send also the rank number for each global dof
host_rank.SetSize(nrpatch);
MPI_Allgatherv(cownvert_ptr, mynrpatch, MPI_INT, &patch_global_dofs_ids[0], count, displs, MPI_INT, comm);
MPI_Allgatherv(dof_rank_id_ptr, mynrpatch, MPI_INT, &host_rank[0], count, displs, MPI_INT, comm);
int size = patch_global_dofs_ids[nrpatch - 1] + 1;
patch_natural_order_idx.SetSize(size);
// initialize with -1
patch_natural_order_idx = -1;
for (int i = 0; i < nrpatch; i++)
{
int k = patch_global_dofs_ids[i];
patch_natural_order_idx[k] = i;
}
int nvert = aux_pmesh->GetNV();
// first find all the contributions of the vertices
vert_contr.resize(nvert);
SparseMatrix H1pr_diag;
B->GetDiag(H1pr_diag);
for (int i = 0; i < nvert; i++)
{
int row = i;
int row_size = H1pr_diag.RowSize(row);
int *col = H1pr_diag.GetRowColumns(row);
for (int j = 0; j < row_size; j++)
{
int jv = col[j] + mycdofoffset;
if (is_a_patch(jv, patch_global_dofs_ids))
{
vert_contr[i].Append(jv);
}
}
}
SparseMatrix H1pr_offd;
int *cmap;
B->GetOffd(H1pr_offd, cmap);
for (int i = 0; i < nvert; i++)
{
int row = i;
int row_size = H1pr_offd.RowSize(row);
int *col = H1pr_offd.GetRowColumns(row);
for (int j = 0; j < row_size; j++)
{
int jv = cmap[col[j]];
if (is_a_patch(jv, patch_global_dofs_ids))
{
vert_contr[i].Append(jv);
}
}
}
Array<int> edge_vertices;
int nedge = aux_pmesh->GetNEdges();
edge_contr.resize(nedge);
for (int ie = 0; ie < nedge; ie++)
{
aux_pmesh->GetEdgeVertices(ie, edge_vertices);
int nv = edge_vertices.Size(); // always 2 but ok
// The edge will contribute to the same patches as its vertices
for (int iv = 0; iv < nv; iv++)
{
int ivert = edge_vertices[iv];
edge_contr[ie].Append(vert_contr[ivert]);
}
edge_contr[ie].Sort();
edge_contr[ie].Unique();
}
// -----------------------------------------------------------------------
// done with edges. Now the faces
// -----------------------------------------------------------------------
Array<int> face_vertices;
int nface = aux_pmesh->GetNFaces();
face_contr.resize(nface);
for (int ifc = 0; ifc < nface; ifc++)
{
aux_pmesh->GetFaceVertices(ifc, face_vertices);
int nv = face_vertices.Size();
// The face will contribute to the same patches as its vertices
for (int iv = 0; iv < nv; iv++)
{
int ivert = face_vertices[iv];
face_contr[ifc].Append(vert_contr[ivert]);
}
face_contr[ifc].Sort();
face_contr[ifc].Unique();
}
// -----------------------------------------------------------------------
// Finally the elements
// -----------------------------------------------------------------------
Array<int> elem_vertices;
int nelem = aux_pmesh->GetNE();
elem_contr.resize(nelem);
for (int iel = 0; iel < nelem; iel++)
{
aux_pmesh->GetElementVertices(iel, elem_vertices);
int nv = elem_vertices.Size();
// The element will contribute to the same patches as its vertices
for (int iv = 0; iv < nv; iv++)
{
int ivert = elem_vertices[iv];
elem_contr[iel].Append(vert_contr[ivert]);
}
elem_contr[iel].Sort();
elem_contr[iel].Unique();
}
if(Pr) delete A;
delete B;
if(Pr) delete Pr;
delete cDofTrueDof;
delete aux_fespace;
delete aux_fec;
delete aux_pmesh;
}
PatchDofInfo::PatchDofInfo(ParMesh *pmesh_, int ref_levels_, ParFiniteElementSpace *fespace)
{
VertexPatchInfo *patch_nodes = new VertexPatchInfo(pmesh_, ref_levels_);
int num_procs, myid;
comm = pmesh_->GetComm();
MPI_Comm_size(comm, &num_procs);
MPI_Comm_rank(comm, &myid);
// Build a list on each processor identifying the truedofs in each patch
// First the vertices
nrpatch = patch_nodes->nrpatch;
host_rank = patch_nodes->host_rank;
patch_local_tdofs.resize(nrpatch);
int * offs = fespace->GetTrueDofOffsets();
int nrvert = fespace->GetNV();
for (int i = 0; i < nrvert; i++)
{
int np = patch_nodes->vert_contr[i].Size();
if (np == 0) continue;
Array<int> vertex_dofs;
fespace->GetVertexDofs(i, vertex_dofs);
int nv = vertex_dofs.Size();
for (int j = 0; j < np; j++)
{
int k = patch_nodes->vert_contr[i][j];
int kk = patch_nodes->patch_natural_order_idx[k];
for (int l = 0; l < nv; l++)
{
int m = fespace->GetGlobalTDofNumber(vertex_dofs[l]);
if (owned(m,offs)) patch_local_tdofs[kk].Append(m);
}
}
}
int nedge = fespace->GetMesh()->GetNEdges();
for (int i = 0; i < nedge; i++)
{
int np = patch_nodes->edge_contr[i].Size();
if (np == 0) continue;
Array<int> edge_dofs;
fespace->GetEdgeInteriorDofs(i, edge_dofs);
int nv = edge_dofs.Size();
for (int j = 0; j < np; j++)
{
int k = patch_nodes->edge_contr[i][j];
int kk = patch_nodes->patch_natural_order_idx[k];
for (int l = 0; l < nv; l++)
{
int m = fespace->GetGlobalTDofNumber(edge_dofs[l]);
if (owned(m,offs)) patch_local_tdofs[kk].Append(m);
}
}
}
int nface = fespace->GetMesh()->GetNFaces();
for (int i = 0; i < nface; i++)
{
int np = patch_nodes->face_contr[i].Size();
if (np == 0) continue;
Array<int> face_dofs;
fespace->GetFaceInteriorDofs(i, face_dofs);
int nv = face_dofs.Size();
for (int j = 0; j < np; j++)
{
int k = patch_nodes->face_contr[i][j];
int kk = patch_nodes->patch_natural_order_idx[k];
for (int l = 0; l < nv; l++)
{
int m = fespace->GetGlobalTDofNumber(face_dofs[l]);
if (owned(m,offs)) patch_local_tdofs[kk].Append(m);
}
}
}
int nelem = fespace->GetNE();
for (int i = 0; i < nelem; i++)
{
int np = patch_nodes->elem_contr[i].Size();
if (np == 0) continue;
Array<int> elem_dofs;
fespace->GetElementInteriorDofs(i, elem_dofs);
int nv = elem_dofs.Size();
for (int j = 0; j < np; j++)
{
int k = patch_nodes->elem_contr[i][j];
int kk = patch_nodes->patch_natural_order_idx[k];
for (int l = 0; l < nv; l++)
{
int m = fespace->GetGlobalTDofNumber(elem_dofs[l]);
if (owned(m,offs)) patch_local_tdofs[kk].Append(m);
}
}
}
delete patch_nodes;
patch_tdofs.resize(nrpatch);
for (int i = 0; i < nrpatch; i++)
{
Array<int> count(num_procs);
int size = patch_local_tdofs[i].Size();
count[myid] = size;
MPI_Allgather(&size, 1, MPI_INT, &count[0], 1, MPI_INT, comm);
Array<int>displs(num_procs);
displs[0] = 0;
for (int j = 1; j < num_procs; j++)
{
displs[j] = displs[j-1] + count[j-1];
}
int tot_size = displs[num_procs - 1] + count[num_procs - 1];
// Get a group identifier for comm.
MPI_Group world_group_id;
MPI_Comm new_comm = MPI_COMM_NULL;
MPI_Group new_group_id;
MPI_Comm_group (comm, &world_group_id);
// count the ranks that do not have zero length
int num_ranks = 0;
for (int k = 0; k<num_procs; k++)
{
if (count[k] != 0) {num_ranks++;}
}
Array<int> new_count(num_ranks);
Array<int> new_displs(num_ranks);
int sub_comm_ranks[num_ranks];
num_ranks = 0;
for (int j = 0; j <num_procs ; j++ )
{
if (count[j] != 0)
{
sub_comm_ranks[num_ranks] = j;
new_count[num_ranks] = count[j];
new_displs[num_ranks] = displs[j];
num_ranks++;
}
}
MPI_Group_incl(world_group_id, num_ranks, sub_comm_ranks, &new_group_id);
MPI_Comm_create(comm, new_group_id, &new_comm);
if (size != 0)
{
patch_tdofs[i].SetSize(tot_size);
MPI_Allgatherv(&patch_local_tdofs[i][0],size,MPI_INT,
&patch_tdofs[i][0],new_count,new_displs,MPI_INT,new_comm);
}
MPI_Group_free(&world_group_id);
MPI_Group_free(&new_group_id);
if (new_comm != MPI_COMM_NULL) MPI_Comm_free(&new_comm);
}
}
PatchAssembly::PatchAssembly(ParMesh *cpmesh_, int ref_levels_, ParFiniteElementSpace *fespace_, HypreParMatrix * A_)
: A(A_), fespace(fespace_)
{
comm = A->GetComm();
int num_procs, myid;
MPI_Comm_size(comm, &num_procs);
MPI_Comm_rank(comm, &myid);
compute_trueoffsets();
SparseMatrix diag;
SparseMatrix offd;
int *cmap;
A->GetDiag(diag);
A->GetOffd(offd,cmap);
int *row_start = A->GetRowStarts();
SparseMatrix offdT;
int *cmapT;
HypreParMatrix * At = A->Transpose();
At->GetOffd(offdT,cmapT);
int *row_startT = At->GetRowStarts();
diag.SortColumnIndices();
patch_tdof_info = new PatchDofInfo(cpmesh_, ref_levels_,fespace);
nrpatch = patch_tdof_info->nrpatch;
host_rank.SetSize(nrpatch); host_rank = -1;
// This can be changed later. For now the required lists are
// constructed from the whole list
patch_other_tdofs.resize(nrpatch);
patch_owned_other_tdofs.resize(nrpatch);
for (int ip = 0; ip < nrpatch; ip++)
{
int ndof = patch_tdof_info->patch_tdofs[ip].Size();
if (ndof !=0 )
{
host_rank[ip] = patch_tdof_info->host_rank[ip];
// host_rank[ip] = get_rank(patch_tdof_info->patch_tdofs[ip][0]);
for (int i=0; i<ndof; i++)
{
int tdof = patch_tdof_info->patch_tdofs[ip][i];
int tdof_rank = get_rank(tdof);
if (tdof_rank != host_rank[ip])
{
patch_other_tdofs[ip].Append(tdof);
}
}
GetArrayIntersection(patch_other_tdofs[ip], patch_tdof_info->patch_local_tdofs[ip], patch_owned_other_tdofs[ip]);
}
}
// For the construction of the matrix of a patch we follow the following procedure.
// The matrix will be split to a 2x2 block matrix where:
// Block (0,0) is constructed by the dofs owned by the processor (using diag and RAP)
// Block (0,1) is constructed by the dofs owned by the processor (using offd)
// Block (1,0) is the Transpose of (0,1) (for now the support is only for symmetric matrices)
// Block (1,1) has to be communicated among processors. Its constructed by the dofs not owned by the processor.
Array<SparseMatrix * > PatchMat00(nrpatch);
l2gmaps.resize(nrpatch);
//--------------------------------------------------------------------------------------
// Construction of (0,0): This is done with RAP
//--------------------------------------------------------------------------------------
for (int ip = 0; ip < nrpatch; ip++)
{
PatchMat00[ip]=nullptr;
if (myid == host_rank[ip])
{
int num_cols = patch_tdof_info->patch_local_tdofs[ip].Size();
int num_rows = diag.Height();
// loop through rows
// l2gmaps[ip].SetSize(num_cols);
GetLocal2GlobalMap(patch_tdof_info->patch_local_tdofs[ip],
row_start, num_rows, num_cols, l2gmaps[ip]);
// Build prolongation (temporary to perform RAP)
SparseMatrix Prl(num_rows,num_cols);
for (int i=0; i<num_cols; ++i)
{
int ii = l2gmaps[ip][i];
Prl.Set(ii,i,1.0);
}
Prl.Finalize();
PatchMat00[ip] = RAP(Prl,diag,Prl);
}
}
//--------------------------------------------------------------------------------------
// Construction of (0,1) and its transpose
//--------------------------------------------------------------------------------------
// The matrix PatchMat10 is the same as PatchMat01 only for symmetric problems
// For the case of FOSLS the offdiagonal matrices are not symmetric because of the essential BC
// Therefore Patch10 has to be computed in the same way with (0,1) but using the traspose of A
// loop through patches
Array<SparseMatrix * > PatchMat01(nrpatch);
Array<SparseMatrix * > PatchMat10(nrpatch);
for (int ip = 0; ip < nrpatch; ++ip)
{
PatchMat01[ip] = nullptr;
PatchMat10[ip] = nullptr;
if (myid == host_rank[ip])
{
int num_rows = patch_tdof_info->patch_local_tdofs[ip].Size();
int num_cols = patch_other_tdofs[ip].Size();
if (num_rows*num_cols !=0)
{
PatchMat01[ip] = new SparseMatrix(num_rows, num_cols);
GetOffdColumnValues(patch_tdof_info->patch_local_tdofs[ip],patch_other_tdofs[ip],offd, cmap,row_start, PatchMat01[ip]);
PatchMat01[ip]->Finalize();
// Now the transpose
SparseMatrix Mat(num_rows, num_cols);
GetOffdColumnValues(patch_tdof_info->patch_local_tdofs[ip],patch_other_tdofs[ip],offdT, cmapT,row_startT, &Mat);
Mat.Finalize();
PatchMat10[ip] = Transpose(Mat);
}
}
}
delete patch_tdof_info;
delete At;
//--------------------------------------------------------------------------------------
// Construction of (1,1)
//--------------------------------------------------------------------------------------
// 1. Send info (sendbuff, sentcounts, send sdispls)
// Each proccess computes and groups together an array of sendbuff. There will be
// one sendbuff for all patches
Array<int> send_count(num_procs);
Array<int> send_displ(num_procs);
Array<int> recv_count(num_procs);
Array<int> recv_displ(num_procs);
send_count = 0; send_displ = 0;
recv_count = 0; recv_displ = 0;
for (int ip = 0; ip < nrpatch; ip++)
{
// loop through the dofs and identify their ranks
int sendnum_rows = patch_owned_other_tdofs[ip].Size();
for (int i =0; i<sendnum_rows; i++)
{
int tdof = patch_owned_other_tdofs[ip][i];
int tdof_rank = get_rank(tdof);
if (myid == tdof_rank)
{
int k = GetNumColumns(tdof,patch_other_tdofs[ip],diag, offd, cmap, row_start);
// pass one more that holds how many
send_count[host_rank[ip]] += k+2;
}
}
}
// comunicate so that recv_count is constructed
MPI_Alltoall(&send_count[0],1,MPI_INT,&recv_count[0],1,MPI_INT,comm);
for (int k=0; k<num_procs-1; k++)
{
send_displ[k+1] = send_displ[k] + send_count[k];
recv_displ[k+1] = recv_displ[k] + recv_count[k];
}
int sbuff_size = send_count.Sum();
int rbuff_size = recv_count.Sum();
// now allocate space for the send buffer
Array<double> sendbuf(sbuff_size); sendbuf = 0;
Array<int> sendmap(sbuff_size); sendmap = 0;
Array<int> soffs(num_procs); soffs = 0;
// now the data will be placed according to process offsets
for (int ip = 0; ip < nrpatch; ip++)
{
// loop through the dofs and identify their ranks
int sendnum_rows = patch_owned_other_tdofs[ip].Size();
for (int i = 0; i<sendnum_rows; i++)
{
int tdof = patch_owned_other_tdofs[ip][i];
// find its rank
int tdof_rank = get_rank(tdof);
if (myid == tdof_rank)
{
Array<int>cols;
Array<double>vals;
GetColumnValues(tdof,patch_other_tdofs[ip],diag,offd, cmap,row_start, cols,vals);
int j = send_displ[host_rank[ip]] + soffs[host_rank[ip]];
int size = cols.Size();
// Pass one more to hold the size
soffs[host_rank[ip]] += size+1;
// need to save and communicate these offsets for extraction from recv_buff
// // For now we do the copy (will be changed later)
sendbuf[j] = 0.0;
sendmap[j] = size;
for (int k=0; k<size ; k++)
{
sendbuf[j+k+1] = vals[k];
sendmap[j+k+1] = cols[k];
}
}
}
}
// communication
Array<double> recvbuf(rbuff_size);
Array<int> recvmap(rbuff_size);
double * sendbuf_ptr = nullptr;
double * recvbuf_ptr = nullptr;
int * sendmap_ptr = nullptr;
int * recvmap_ptr = nullptr;
if (sbuff_size !=0 )
{
sendbuf_ptr = &sendbuf[0];
sendmap_ptr = &sendmap[0];
}
if (rbuff_size !=0 )
{
recvbuf_ptr = &recvbuf[0];
recvmap_ptr = &recvmap[0];
}
MPI_Alltoallv(sendbuf_ptr, send_count, send_displ, MPI_DOUBLE, recvbuf_ptr,
recv_count, recv_displ, MPI_DOUBLE, comm);
MPI_Alltoallv(sendmap_ptr, send_count, send_displ, MPI_INT, recvmap_ptr,
recv_count, recv_displ, MPI_INT, comm);
Array<SparseMatrix * > PatchMat11(nrpatch);
Array<int> roffs(num_procs);
roffs = 0;
// Now each process will construct the SparseMatrix
for (int ip = 0; ip < nrpatch; ip++)
{
PatchMat11[ip] = nullptr;
if(myid == host_rank[ip])
{
int ndof = patch_other_tdofs[ip].Size();
PatchMat11[ip] = new SparseMatrix(ndof,ndof);
// extract the data from receiv buffer
// loop through rows
for (int i=0; i<ndof; i++)
{
// pick up the dof and find its tdof_rank
int tdof = patch_other_tdofs[ip][i];
int tdof_rank= get_rank(tdof);
// offset
int k = recv_displ[tdof_rank] + roffs[tdof_rank];
roffs[tdof_rank] += recvmap[k]+1;
// copy to the matrix
for (int j =0; j<recvmap[k]; j++)
{
int jj = recvmap[k+j+1];
PatchMat11[ip]->Set(i,jj,recvbuf[k+j+1]);
}
}
PatchMat11[ip]->Finalize();
}
}
Array<BlockMatrix * > BlkPatchMat(nrpatch);
PatchMat.SetSize(nrpatch);
for (int ip = 0; ip < nrpatch; ip++)
{
//initialise to nullptr
PatchMat[ip] = nullptr;
if (myid == host_rank[ip])
{
if (PatchMat11[ip]->Height() !=0)
{
Array<int>block_offsets(3);
block_offsets[0] = 0;
block_offsets[1] = PatchMat00[ip]->Height();
block_offsets[2] = PatchMat11[ip]->Height();
block_offsets.PartialSum();
BlkPatchMat[ip] = new BlockMatrix(block_offsets);
BlkPatchMat[ip]->SetBlock(0,0,PatchMat00[ip]);
BlkPatchMat[ip]->SetBlock(0,1,PatchMat01[ip]);
BlkPatchMat[ip]->SetBlock(1,0,PatchMat10[ip]);
BlkPatchMat[ip]->SetBlock(1,1,PatchMat11[ip]);
// Convert to sparse
PatchMat[ip] = BlkPatchMat[ip]->CreateMonolithic();
delete BlkPatchMat[ip];
}
else
{
PatchMat[ip] = new SparseMatrix(*PatchMat00[ip]);
}
delete PatchMat00[ip];
delete PatchMat10[ip];
delete PatchMat01[ip];
delete PatchMat11[ip];
PatchMat[ip]->Threshold(1e-13);
}
}
PatchMat00.DeleteAll();
PatchMat01.DeleteAll();
PatchMat10.DeleteAll();
PatchMat11.DeleteAll();
}
PatchRestriction::PatchRestriction(PatchAssembly * P_) : P(P_)
{
comm = P->comm;
MPI_Comm_size(comm, &num_procs);
MPI_Comm_rank(comm, &myid);
nrpatch = P->nrpatch;
host_rank = P->host_rank;
send_count.SetSize(num_procs);
send_displ.SetSize(num_procs);
recv_count.SetSize(num_procs);
recv_displ.SetSize(num_procs);
send_count = 0; send_displ = 0;
recv_count = 0; recv_displ = 0;
// Precompute send_counts
for (int ip = 0; ip < nrpatch; ip++)
{
int sendnum_rows = P->patch_owned_other_tdofs[ip].Size();
for (int i =0; i<sendnum_rows; i++)
{
int tdof = P->patch_owned_other_tdofs[ip][i];
int tdof_rank = P->get_rank(tdof);
if (myid == tdof_rank)
{
send_count[host_rank[ip]]++;
}
}
}
// comunicate so that recv_count is constructed
MPI_Alltoall(&send_count[0],1,MPI_INT,&recv_count[0],1,MPI_INT,comm);
//
for (int k=0; k<num_procs-1; k++)
{
send_displ[k+1] = send_displ[k] + send_count[k];
recv_displ[k+1] = recv_displ[k] + recv_count[k];
}
sbuff_size = send_count.Sum();
rbuff_size = recv_count.Sum();
}
void PatchRestriction::Mult(const Vector & r , Array<BlockVector*> & res)
{
int *row_start = P->A->GetRowStarts();
std::vector<Vector> res0(nrpatch); // residual on the processor
std::vector<Vector> res1(nrpatch); // residual off the processor
// Part of the residual on the processor
for (int ip = 0; ip < nrpatch; ip++)
{
if (myid == host_rank[ip])
{
r.GetSubVector(P->l2gmaps[ip], res0[ip]);
}
}
// now allocate space for the send buffer
Array<double> sendbuf(sbuff_size); sendbuf = 0;
Array<int> soffs(num_procs); soffs = 0;
// now the data will be placed according to process offsets
for (int ip = 0; ip < nrpatch; ip++)
{
int sendnum_rows = P->patch_owned_other_tdofs[ip].Size();
for (int i = 0; i<sendnum_rows; i++)
{
int tdof = P->patch_owned_other_tdofs[ip][i];
// find its rank
int tdof_rank = P->get_rank(tdof);
if (myid == tdof_rank)
{
int j = send_displ[host_rank[ip]] + soffs[host_rank[ip]];
soffs[host_rank[ip]]++;
int k = tdof - row_start[0];
sendbuf[j] = r[k];
}
}
}
// communication
Array<double> recvbuf(rbuff_size);
double * sendbuf_ptr = nullptr;
double * recvbuf_ptr = nullptr;
if (sbuff_size !=0 ) sendbuf_ptr = &sendbuf[0];
if (rbuff_size !=0 ) recvbuf_ptr = &recvbuf[0];
MPI_Alltoallv(sendbuf_ptr, send_count, send_displ, MPI_DOUBLE, recvbuf_ptr,
recv_count, recv_displ, MPI_DOUBLE, comm);
Array<int> roffs(num_procs);
roffs = 0;
// Now each process will construct the res1 vector
for (int ip = 0; ip < nrpatch; ip++)
{
if(myid == host_rank[ip])
{
int ndof = P->patch_other_tdofs[ip].Size();
res1[ip].SetSize(ndof);
// extract the data from receiv buffer
// loop through rows
for (int i=0; i<ndof; i++)
{
// pick up the dof and find its tdof_rank
int tdof = P->patch_other_tdofs[ip][i];
int tdof_rank= P->get_rank(tdof);
// offset
int k = recv_displ[tdof_rank] + roffs[tdof_rank];
roffs[tdof_rank]++;
res1[ip][i] = recvbuf[k];
}
}
}
res.SetSize(nrpatch);
for (int ip=0; ip<nrpatch; ip++)
{
res[ip] = nullptr;
if(myid == host_rank[ip])
{
Array<int> block_offs(3);
block_offs[0] = 0;
block_offs[1] = res0[ip].Size();
block_offs[2] = res1[ip].Size();
block_offs.PartialSum();
res[ip] = new BlockVector(block_offs);
res[ip]->SetVector(res0[ip], 0);
res[ip]->SetVector(res1[ip], res0[ip].Size());
}
}
}
void PatchRestriction::MultTranspose(const Array<BlockVector *> & sol, Vector & z)
{
int *row_start = P->A->GetRowStarts();
std::vector<Vector> sol0(nrpatch);
std::vector<Vector> sol1(nrpatch);
// Step 3: Propagate the information to the global solution vector
// (the recv_buff becomes the sendbuff and vice-versa)
Array<double> sendbuf(sbuff_size); sendbuf = 0.0;
Array<double> recvbuf(rbuff_size); recvbuf = 0.0;
Array<int> roffs(num_procs); roffs = 0;
Array<int> soffs(num_procs); soffs = 0;
for (int ip = 0; ip < nrpatch; ip++)
{
if(myid == host_rank[ip])
{
sol1[ip] = sol[ip]->GetBlock(1);
int ndof = P->patch_other_tdofs[ip].Size();
// loop through rows
for (int i=0; i<ndof; i++)
{
// pick up the dof and find its tdof_rank
int tdof = P->patch_other_tdofs[ip][i];
int tdof_rank= P->get_rank(tdof);
// offset
int k = recv_displ[tdof_rank] + roffs[tdof_rank];
roffs[tdof_rank]++;
recvbuf[k] = sol1[ip][i];
}
}
}
// now communication
double * sendbuf_ptr = nullptr;
double * recvbuf_ptr = nullptr;
if (sbuff_size !=0 ) sendbuf_ptr = &sendbuf[0];
if (rbuff_size !=0 ) recvbuf_ptr = &recvbuf[0];
MPI_Alltoallv(recvbuf_ptr, recv_count, recv_displ, MPI_DOUBLE, sendbuf_ptr,
send_count, send_displ, MPI_DOUBLE, comm);
// 1. Accummulate for the solution to other prosessors
for (int ip = 0; ip < nrpatch; ip++)
{
int sendnum_rows = P->patch_owned_other_tdofs[ip].Size();
for (int i = 0; i<sendnum_rows; i++)
{
int tdof = P->patch_owned_other_tdofs[ip][i];
// find its rank
int tdof_rank = P->get_rank(tdof);
if (myid == tdof_rank)
{
int j = send_displ[host_rank[ip]] + soffs[host_rank[ip]];
soffs[host_rank[ip]]++;
int k = tdof - row_start[0];
z[k] += sendbuf[j];
}