-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathmeshOptMWE.cpp
357 lines (320 loc) · 12 KB
/
meshOptMWE.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
// Compile with: make meshOptMWE
// Sample run with gslib: meshOptMWE -m square01.mesh -o 2 -rs 2 -mid 80 -tid 5 -ni 50 -qo 4 -nor -vl 2 -ae 1
// Set -ae 0 for running without gslib
#include "mfem.hpp"
#include "common/mfem-common.hpp"
#include <fstream>
#include <iostream>
using namespace mfem;
using namespace std;
double discrete_size_2d(const Vector &x)
{
int opt = 2;
const double small = 0.001, big = 0.01;
double val = 0.;
const double xc = x(0) - 0.0, yc = x(1) - 0.5;
const double r = sqrt(xc*xc + yc*yc);
double r1 = 0.45; double r2 = 0.55; double sf=30.0;
val = 0.5*(1+std::tanh(sf*(r-r1))) - 0.5*(1+std::tanh(sf*(r-r2)));
val = std::max(0.,val);
val = std::min(1.,val);
return val * small + (1.0 - val) * big;
}
IntegrationRules IntRulesLo(0, Quadrature1D::GaussLobatto);
IntegrationRules IntRulesCU(0, Quadrature1D::ClosedUniform);
int main(int argc, char *argv[])
{
// 0. Set the method's default parameters.
const char *mesh_file = "icf.mesh";
int mesh_poly_deg = 1;
int rs_levels = 0;
int metric_id = 1;
int target_id = 1;
int quad_type = 1;
int quad_order = 8;
int solver_type = 0;
int solver_iter = 20;
double solver_rtol = 1e-10;
int solver_art_type = 0;
int lin_solver = 2;
int max_lin_iter = 100;
bool hradaptivity = false;
bool normalization = false;
bool visualization = true;
int verbosity_level = 0;
int adapt_eval = 0;
const char *devopt = "cpu";
int n_hr_iter = 5;
int n_h_iter = 1;
// 1. Parse command-line options.
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&mesh_poly_deg, "-o", "--order",
"Polynomial degree of mesh finite element space.");
args.AddOption(&rs_levels, "-rs", "--refine-serial",
"Number of times to refine the mesh uniformly in serial.");
args.AddOption(&metric_id, "-mid", "--metric-id",
"Mesh optimization metric:\n\t"
"T-metrics\n\t"
"2 : 0.5|T|^2/tau-1 -- 2D shape (condition number)\n\t"
);
args.AddOption(&target_id, "-tid", "--target-id",
"Target (ideal element) type:\n\t"
"5: Ideal shape, given size (in physical space)");
args.AddOption(&quad_type, "-qt", "--quad-type",
"Quadrature rule type:\n\t"
"1: Gauss-Lobatto\n\t"
"2: Gauss-Legendre\n\t"
"3: Closed uniform points");
args.AddOption(&quad_order, "-qo", "--quad_order",
"Order of the quadrature rule.");
args.AddOption(&solver_type, "-st", "--solver-type",
" Type of solver: (default) 0: Newton, 1: LBFGS");
args.AddOption(&solver_iter, "-ni", "--newton-iters",
"Maximum number of Newton iterations.");
args.AddOption(&solver_rtol, "-rtol", "--newton-rel-tolerance",
"Relative tolerance for the Newton solver.");
args.AddOption(&solver_art_type, "-art", "--adaptive-rel-tol",
"Type of adaptive relative linear solver tolerance:\n\t"
"0: None (default)\n\t"
"1: Eisenstat-Walker type 1\n\t"
"2: Eisenstat-Walker type 2");
args.AddOption(&lin_solver, "-ls", "--lin-solver",
"Linear solver:\n\t"
"0: l1-Jacobi\n\t"
"1: CG\n\t"
"2: MINRES\n\t"
"3: MINRES + Jacobi preconditioner\n\t"
"4: MINRES + l1-Jacobi preconditioner");
args.AddOption(&max_lin_iter, "-li", "--lin-iter",
"Maximum number of iterations in the linear solve.");
args.AddOption(&hradaptivity, "-hr", "--hr-adaptivity", "-no-hr",
"--no-hr-adaptivity",
"Enable hr-adaptivity.");
args.AddOption(&normalization, "-nor", "--normalization", "-no-nor",
"--no-normalization",
"Make all terms in the optimization functional unitless.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&verbosity_level, "-vl", "--verbosity-level",
"Set the verbosity level - 0, 1, or 2.");
args.AddOption(&adapt_eval, "-ae", "--adaptivity-evaluator",
"0 - Advection based (DEFAULT), 1 - GSLIB.");
args.AddOption(&n_hr_iter, "-nhr", "--n_hr_iter",
"Number of hr-adaptivity iterations.");
args.AddOption(&n_h_iter, "-nh", "--n_h_iter",
"Number of h-adaptivity iterations per r-adaptivity"
"iteration.");
args.Parse();
if (!args.Good())
{
args.PrintUsage(cout);
return 1;
}
args.PrintOptions(cout);
if (hradaptivity)
{
MFEM_VERIFY(strcmp(devopt,"cpu")==0, "HR-adaptivity is currently only"
" supported on cpus.");
}
// 2. Initialize and refine the starting mesh.
Mesh *mesh = new Mesh(mesh_file, 1, 1, false);
for (int lev = 0; lev < rs_levels; lev++) { mesh->UniformRefinement(); }
const int dim = mesh->Dimension();
FiniteElementCollection *fec = new H1_FECollection(mesh_poly_deg, dim);
FiniteElementSpace *fespace = new FiniteElementSpace(mesh, fec, dim);
mesh->SetNodalFESpace(fespace);
Vector b(0);
GridFunction x(fespace);
mesh->SetNodalGridFunction(&x);
x.SetTrueVector();
x.SetFromTrueVector();
// 9. Save the starting (prior to the optimization) mesh to a file. This
// output can be viewed later using GLVis: "glvis -m perturbed.mesh".
{
ofstream mesh_ofs("perturbed.mesh");
mesh->Print(mesh_ofs);
}
// 10. Store the starting (prior to the optimization) positions.
GridFunction x0(fespace);
x0 = x;
TMOP_QualityMetric *metric = new TMOP_Metric_080(0.5);
TargetConstructor::TargetType target_t;
TargetConstructor *target_c = NULL;
H1_FECollection ind_fec(mesh_poly_deg, dim);
FiniteElementSpace ind_fes(mesh, &ind_fec);
GridFunction size(&ind_fes);
switch (target_id)
{
case 5: // Discrete size 2D or 3D
{
target_t = TargetConstructor::IDEAL_SHAPE_GIVEN_SIZE;
DiscreteAdaptTC *tc = new DiscreteAdaptTC(target_t);
if (adapt_eval == 0)
{
tc->SetAdaptivityEvaluator(new AdvectorCG());
}
else
{
#ifdef MFEM_USE_GSLIB
tc->SetAdaptivityEvaluator(new InterpolatorFP);
#else
MFEM_ABORT("MFEM is not built with GSLIB.");
#endif
}
if (dim == 2)
{
FunctionCoefficient size_coeff(discrete_size_2d);
size.ProjectCoefficient(size_coeff);
}
else
{
MFEM_ABORT("only dim == 2 supported for this MWE.");
}
tc->SetSerialDiscreteTargetSize(size);
target_c = tc;
break;
}
default: cout << "Unknown target_id: " << target_id << endl; return 3;
}
if (target_c == NULL)
{
target_c = new TargetConstructor(target_t);
}
target_c->SetNodes(x0);
TMOP_Integrator *tmop_integ = new TMOP_Integrator(metric, target_c);
// Setup the quadrature rules for the TMOP integrator.
IntegrationRules *irules = NULL;
switch (quad_type)
{
case 1: irules = &IntRulesLo; break;
case 2: irules = &IntRules; break;
case 3: irules = &IntRulesCU; break;
default: cout << "Unknown quad_type: " << quad_type << endl; return 3;
}
tmop_integ->SetIntegrationRules(*irules, quad_order);
if (normalization) { tmop_integ->EnableNormalization(x0); }
NonlinearForm a(fespace);
ConstantCoefficient *metric_coeff1 = NULL;
a.AddDomainIntegrator(tmop_integ);
// For HR tests, the energy is normalized by the number of elements.
const double init_energy = a.GetGridFunctionEnergy(x);
// Visualize the starting mesh and metric values.
// Note that for combinations of metrics, this only shows the first metric.
if (visualization)
{
char title[] = "Initial metric values";
vis_tmop_metric_s(mesh_poly_deg, *metric, *target_c, *mesh, title, 0);
}
// 13. Fix all boundary nodes, or fix only a given component depending on the
// boundary attributes of the given mesh. Attributes 1/2/3 correspond to
// fixed x/y/z components of the node. Attribute 4 corresponds to an
// entirely fixed node. Other boundary attributes do not affect the node
// movement boundary conditions.
Array<int> vdofs;
Array<int> ess_bdr(mesh->bdr_attributes.Max());
ess_bdr = 1;
a.SetEssentialBC(ess_bdr);
// 14. As we use the Newton method to solve the resulting nonlinear system,
// here we setup the linear solver for the system's Jacobian.
Solver *S = NULL, *S_prec = NULL;
const double linsol_rtol = 1e-12;
if (lin_solver == 0)
{
S = new DSmoother(1, 1.0, max_lin_iter);
}
else if (lin_solver == 1)
{
CGSolver *cg = new CGSolver;
cg->SetMaxIter(max_lin_iter);
cg->SetRelTol(linsol_rtol);
cg->SetAbsTol(0.0);
cg->SetPrintLevel(verbosity_level >= 2 ? 3 : -1);
S = cg;
}
else
{
MINRESSolver *minres = new MINRESSolver;
minres->SetMaxIter(max_lin_iter);
minres->SetRelTol(linsol_rtol);
minres->SetAbsTol(0.0);
if (verbosity_level > 2) { minres->SetPrintLevel(1); }
minres->SetPrintLevel(verbosity_level == 2 ? 3 : -1);
if (lin_solver == 3 || lin_solver == 4)
{
auto ds = new DSmoother((lin_solver == 3) ? 0 : 1, 1.0, 1);
ds->SetPositiveDiagonal(true);
S_prec = ds;
minres->SetPreconditioner(*S_prec);
}
S = minres;
}
// Perform the nonlinear optimization.
const IntegrationRule &ir =
irules->Get(fespace->GetFE(0)->GetGeomType(), quad_order);
TMOPNewtonSolver solver(ir, solver_type);
solver.SetIntegrationRules(*irules, quad_order);
if (solver_type == 0)
{
// Specify linear solver when we use a Newton-based solver.
solver.SetPreconditioner(*S);
}
solver.SetMaxIter(solver_iter);
solver.SetRelTol(solver_rtol);
solver.SetAbsTol(0.0);
if (solver_art_type > 0)
{
solver.SetAdaptiveLinRtol(solver_art_type, 0.5, 0.9);
}
solver.SetPrintLevel(verbosity_level >= 1 ? 1 : -1);
TMOPHRSolver hr_solver(*mesh, a, solver,
x, false, hradaptivity,
mesh_poly_deg, metric_id,
n_hr_iter, n_h_iter);
hr_solver.AddGridFunctionForUpdate(&x0);
hr_solver.Mult();
// 15. Save the optimized mesh to a file. This output can be viewed later
// using GLVis: "glvis -m optimized.mesh".
{
ofstream mesh_ofs("optimized.mesh");
mesh_ofs.precision(14);
mesh->Print(mesh_ofs);
}
const double fin_energy = a.GetGridFunctionEnergy(x);
std::cout << std::scientific << std::setprecision(4);
cout << "Initial strain energy: " << init_energy << endl;
cout << " Final strain energy: " << fin_energy << endl;
cout << "The strain energy decreased by: "
<< (init_energy - fin_energy) * 100.0 / init_energy << " %." << endl;
// 16. Visualize the final mesh and metric values.
if (visualization)
{
char title[] = "Final metric values";
vis_tmop_metric_s(mesh_poly_deg, *metric, *target_c, *mesh, title, 600);
}
// 17. Visualize the mesh displacement.
if (visualization)
{
osockstream sock(19916, "localhost");
sock << "solution\n";
mesh->Print(sock);
x0 -= x;
x0.Save(sock);
sock.send();
sock << "window_title 'Displacements'\n"
<< "window_geometry "
<< 1200 << " " << 0 << " " << 600 << " " << 600 << "\n"
<< "keys jRmclA" << endl;
}
delete S;
delete S_prec;
delete metric_coeff1;
delete target_c;
delete metric;
delete fespace;
delete fec;
delete mesh;
return 0;
}