forked from coqui-ai/Trainer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_simple_gan.py
176 lines (134 loc) · 5.35 KB
/
train_simple_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
"""
This example shows training of a simple GAN model with MNIST dataset using Gradient Accumulation and Advanced
Optimization where you call optimizer steps manually.
"""
import os
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST
from trainer import Trainer, TrainerConfig, TrainerModel
from trainer.trainer import TrainerArgs
is_cuda = torch.cuda.is_available()
# pylint: skip-file
class Generator(nn.Module):
def __init__(self, latent_dim, img_shape):
super().__init__()
self.img_shape = img_shape
def block(in_feat, out_feat, normalize=True):
layers = [nn.Linear(in_feat, out_feat)]
if normalize:
layers.append(nn.BatchNorm1d(out_feat, 0.8))
layers.append(nn.LeakyReLU(0.2, inplace=True))
return layers
self.model = nn.Sequential(
*block(latent_dim, 128, normalize=False),
*block(128, 256),
*block(256, 512),
*block(512, 1024),
nn.Linear(1024, int(np.prod(img_shape))),
nn.Tanh(),
)
def forward(self, z):
img = self.model(z)
img = img.view(img.size(0), *self.img_shape)
return img
class Discriminator(nn.Module):
def __init__(self, img_shape):
super().__init__()
self.model = nn.Sequential(
nn.Linear(int(np.prod(img_shape)), 512),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, 256),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(256, 1),
nn.Sigmoid(),
)
def forward(self, img):
img_flat = img.view(img.size(0), -1)
validity = self.model(img_flat)
return validity
@dataclass
class GANModelConfig(TrainerConfig):
epochs: int = 1
print_step: int = 2
training_seed: int = 666
class GANModel(TrainerModel):
def __init__(self):
super().__init__()
data_shape = (1, 28, 28)
self.generator = Generator(latent_dim=100, img_shape=data_shape)
self.discriminator = Discriminator(img_shape=data_shape)
def forward(self, x):
...
def optimize(self, batch, trainer):
imgs, _ = batch
# sample noise
z = torch.randn(imgs.shape[0], 100)
z = z.type_as(imgs)
# train discriminator
imgs_gen = self.generator(z)
logits = self.discriminator(imgs_gen.detach())
fake = torch.zeros(imgs.size(0), 1)
fake = fake.type_as(imgs)
loss_fake = trainer.criterion(logits, fake)
valid = torch.ones(imgs.size(0), 1)
valid = valid.type_as(imgs)
logits = self.discriminator(imgs)
loss_real = trainer.criterion(logits, valid)
loss_disc = (loss_real + loss_fake) / 2
# step dicriminator
_, _ = self.scaled_backward(loss_disc, None, trainer, trainer.optimizer[0])
if trainer.total_steps_done % trainer.grad_accum_steps == 0:
trainer.optimizer[0].step()
trainer.optimizer[0].zero_grad()
# train generator
imgs_gen = self.generator(z)
valid = torch.ones(imgs.size(0), 1)
valid = valid.type_as(imgs)
logits = self.discriminator(imgs_gen)
loss_gen = trainer.criterion(logits, valid)
# step generator
_, _ = self.scaled_backward(loss_gen, None, trainer, trainer.optimizer[1])
if trainer.total_steps_done % trainer.grad_accum_steps == 0:
trainer.optimizer[1].step()
trainer.optimizer[1].zero_grad()
return {"model_outputs": logits}, {"loss_gen": loss_gen, "loss_disc": loss_disc}
@torch.no_grad()
def eval_step(self, batch, criterion):
imgs, _ = batch
# sample noise
z = torch.randn(imgs.shape[0], 100)
z = z.type_as(imgs)
imgs_gen = self.generator(z)
valid = torch.ones(imgs.size(0), 1)
valid = valid.type_as(imgs)
logits = self.discriminator(imgs_gen)
loss_gen = trainer.criterion(logits, valid)
return {"model_outputs": logits}, {"loss_gen": loss_gen}
def get_optimizer(self):
discriminator_optimizer = torch.optim.Adam(self.discriminator.parameters(), lr=0.0001, betas=(0.5, 0.999))
generator_optimizer = torch.optim.Adam(self.generator.parameters(), lr=0.001, betas=(0.5, 0.999))
return [discriminator_optimizer, generator_optimizer]
def get_criterion(self):
return nn.BCELoss()
def get_data_loader(
self, config, assets, is_eval, samples, verbose, num_gpus, rank=0
): # pylint: disable=unused-argument
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
dataset = MNIST(os.getcwd(), train=not is_eval, download=True, transform=transform)
dataset.data = dataset.data[:64]
dataset.targets = dataset.targets[:64]
dataloader = DataLoader(dataset, batch_size=config.batch_size, drop_last=True, shuffle=True)
return dataloader
if __name__ == "__main__":
config = GANModelConfig()
config.batch_size = 64
config.grad_clip = None
model = GANModel()
trainer = Trainer(TrainerArgs(), config, model=model, output_path=os.getcwd(), gpu=0 if is_cuda else None)
trainer.config.epochs = 10
trainer.fit()