forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfilemap.c
2517 lines (2253 loc) · 66.2 KB
/
filemap.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* linux/mm/filemap.c
*
* Copyright (C) 1994-1999 Linus Torvalds
*/
/*
* This file handles the generic file mmap semantics used by
* most "normal" filesystems (but you don't /have/ to use this:
* the NFS filesystem used to do this differently, for example)
*/
#include <linux/module.h>
#include <linux/compiler.h>
#include <linux/fs.h>
#include <linux/uaccess.h>
#include <linux/aio.h>
#include <linux/capability.h>
#include <linux/kernel_stat.h>
#include <linux/gfp.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/uio.h>
#include <linux/hash.h>
#include <linux/writeback.h>
#include <linux/backing-dev.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/cpuset.h>
#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
#include <linux/memcontrol.h>
#include <linux/mm_inline.h> /* for page_is_file_cache() */
#include "internal.h"
/*
* FIXME: remove all knowledge of the buffer layer from the core VM
*/
#include <linux/buffer_head.h> /* for try_to_free_buffers */
#include <asm/mman.h>
/*
* Shared mappings implemented 30.11.1994. It's not fully working yet,
* though.
*
* Shared mappings now work. 15.8.1995 Bruno.
*
* finished 'unifying' the page and buffer cache and SMP-threaded the
* page-cache, 21.05.1999, Ingo Molnar <[email protected]>
*
* SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <[email protected]>
*/
/*
* Lock ordering:
*
* ->i_mmap_lock (truncate_pagecache)
* ->private_lock (__free_pte->__set_page_dirty_buffers)
* ->swap_lock (exclusive_swap_page, others)
* ->mapping->tree_lock
*
* ->i_mutex
* ->i_mmap_lock (truncate->unmap_mapping_range)
*
* ->mmap_sem
* ->i_mmap_lock
* ->page_table_lock or pte_lock (various, mainly in memory.c)
* ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
*
* ->mmap_sem
* ->lock_page (access_process_vm)
*
* ->i_mutex (generic_file_buffered_write)
* ->mmap_sem (fault_in_pages_readable->do_page_fault)
*
* ->i_mutex
* ->i_alloc_sem (various)
*
* ->inode_lock
* ->sb_lock (fs/fs-writeback.c)
* ->mapping->tree_lock (__sync_single_inode)
*
* ->i_mmap_lock
* ->anon_vma.lock (vma_adjust)
*
* ->anon_vma.lock
* ->page_table_lock or pte_lock (anon_vma_prepare and various)
*
* ->page_table_lock or pte_lock
* ->swap_lock (try_to_unmap_one)
* ->private_lock (try_to_unmap_one)
* ->tree_lock (try_to_unmap_one)
* ->zone.lru_lock (follow_page->mark_page_accessed)
* ->zone.lru_lock (check_pte_range->isolate_lru_page)
* ->private_lock (page_remove_rmap->set_page_dirty)
* ->tree_lock (page_remove_rmap->set_page_dirty)
* ->inode_lock (page_remove_rmap->set_page_dirty)
* ->inode_lock (zap_pte_range->set_page_dirty)
* ->private_lock (zap_pte_range->__set_page_dirty_buffers)
*
* ->task->proc_lock
* ->dcache_lock (proc_pid_lookup)
*
* (code doesn't rely on that order, so you could switch it around)
* ->tasklist_lock (memory_failure, collect_procs_ao)
* ->i_mmap_lock
*/
/*
* Remove a page from the page cache and free it. Caller has to make
* sure the page is locked and that nobody else uses it - or that usage
* is safe. The caller must hold the mapping's tree_lock.
*/
void __remove_from_page_cache(struct page *page)
{
struct address_space *mapping = page->mapping;
radix_tree_delete(&mapping->page_tree, page->index);
page->mapping = NULL;
mapping->nrpages--;
__dec_zone_page_state(page, NR_FILE_PAGES);
if (PageSwapBacked(page))
__dec_zone_page_state(page, NR_SHMEM);
BUG_ON(page_mapped(page));
/*
* Some filesystems seem to re-dirty the page even after
* the VM has canceled the dirty bit (eg ext3 journaling).
*
* Fix it up by doing a final dirty accounting check after
* having removed the page entirely.
*/
if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
dec_zone_page_state(page, NR_FILE_DIRTY);
dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
}
}
void remove_from_page_cache(struct page *page)
{
struct address_space *mapping = page->mapping;
BUG_ON(!PageLocked(page));
spin_lock_irq(&mapping->tree_lock);
__remove_from_page_cache(page);
spin_unlock_irq(&mapping->tree_lock);
mem_cgroup_uncharge_cache_page(page);
}
EXPORT_SYMBOL(remove_from_page_cache);
static int sync_page(void *word)
{
struct address_space *mapping;
struct page *page;
page = container_of((unsigned long *)word, struct page, flags);
/*
* page_mapping() is being called without PG_locked held.
* Some knowledge of the state and use of the page is used to
* reduce the requirements down to a memory barrier.
* The danger here is of a stale page_mapping() return value
* indicating a struct address_space different from the one it's
* associated with when it is associated with one.
* After smp_mb(), it's either the correct page_mapping() for
* the page, or an old page_mapping() and the page's own
* page_mapping() has gone NULL.
* The ->sync_page() address_space operation must tolerate
* page_mapping() going NULL. By an amazing coincidence,
* this comes about because none of the users of the page
* in the ->sync_page() methods make essential use of the
* page_mapping(), merely passing the page down to the backing
* device's unplug functions when it's non-NULL, which in turn
* ignore it for all cases but swap, where only page_private(page) is
* of interest. When page_mapping() does go NULL, the entire
* call stack gracefully ignores the page and returns.
* -- wli
*/
smp_mb();
mapping = page_mapping(page);
if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
mapping->a_ops->sync_page(page);
io_schedule();
return 0;
}
static int sync_page_killable(void *word)
{
sync_page(word);
return fatal_signal_pending(current) ? -EINTR : 0;
}
/**
* __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
* @mapping: address space structure to write
* @start: offset in bytes where the range starts
* @end: offset in bytes where the range ends (inclusive)
* @sync_mode: enable synchronous operation
*
* Start writeback against all of a mapping's dirty pages that lie
* within the byte offsets <start, end> inclusive.
*
* If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
* opposed to a regular memory cleansing writeback. The difference between
* these two operations is that if a dirty page/buffer is encountered, it must
* be waited upon, and not just skipped over.
*/
int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
loff_t end, int sync_mode)
{
int ret;
struct writeback_control wbc = {
.sync_mode = sync_mode,
.nr_to_write = LONG_MAX,
.range_start = start,
.range_end = end,
};
if (!mapping_cap_writeback_dirty(mapping))
return 0;
ret = do_writepages(mapping, &wbc);
return ret;
}
static inline int __filemap_fdatawrite(struct address_space *mapping,
int sync_mode)
{
return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
}
int filemap_fdatawrite(struct address_space *mapping)
{
return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
}
EXPORT_SYMBOL(filemap_fdatawrite);
int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
loff_t end)
{
return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
}
EXPORT_SYMBOL(filemap_fdatawrite_range);
/**
* filemap_flush - mostly a non-blocking flush
* @mapping: target address_space
*
* This is a mostly non-blocking flush. Not suitable for data-integrity
* purposes - I/O may not be started against all dirty pages.
*/
int filemap_flush(struct address_space *mapping)
{
return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
}
EXPORT_SYMBOL(filemap_flush);
/**
* filemap_fdatawait_range - wait for writeback to complete
* @mapping: address space structure to wait for
* @start_byte: offset in bytes where the range starts
* @end_byte: offset in bytes where the range ends (inclusive)
*
* Walk the list of under-writeback pages of the given address space
* in the given range and wait for all of them.
*/
int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
loff_t end_byte)
{
pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
struct pagevec pvec;
int nr_pages;
int ret = 0;
if (end_byte < start_byte)
return 0;
pagevec_init(&pvec, 0);
while ((index <= end) &&
(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
PAGECACHE_TAG_WRITEBACK,
min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
unsigned i;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
/* until radix tree lookup accepts end_index */
if (page->index > end)
continue;
wait_on_page_writeback(page);
if (PageError(page))
ret = -EIO;
}
pagevec_release(&pvec);
cond_resched();
}
/* Check for outstanding write errors */
if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
ret = -ENOSPC;
if (test_and_clear_bit(AS_EIO, &mapping->flags))
ret = -EIO;
return ret;
}
EXPORT_SYMBOL(filemap_fdatawait_range);
/**
* filemap_fdatawait - wait for all under-writeback pages to complete
* @mapping: address space structure to wait for
*
* Walk the list of under-writeback pages of the given address space
* and wait for all of them.
*/
int filemap_fdatawait(struct address_space *mapping)
{
loff_t i_size = i_size_read(mapping->host);
if (i_size == 0)
return 0;
return filemap_fdatawait_range(mapping, 0, i_size - 1);
}
EXPORT_SYMBOL(filemap_fdatawait);
int filemap_write_and_wait(struct address_space *mapping)
{
int err = 0;
if (mapping->nrpages) {
err = filemap_fdatawrite(mapping);
/*
* Even if the above returned error, the pages may be
* written partially (e.g. -ENOSPC), so we wait for it.
* But the -EIO is special case, it may indicate the worst
* thing (e.g. bug) happened, so we avoid waiting for it.
*/
if (err != -EIO) {
int err2 = filemap_fdatawait(mapping);
if (!err)
err = err2;
}
}
return err;
}
EXPORT_SYMBOL(filemap_write_and_wait);
/**
* filemap_write_and_wait_range - write out & wait on a file range
* @mapping: the address_space for the pages
* @lstart: offset in bytes where the range starts
* @lend: offset in bytes where the range ends (inclusive)
*
* Write out and wait upon file offsets lstart->lend, inclusive.
*
* Note that `lend' is inclusive (describes the last byte to be written) so
* that this function can be used to write to the very end-of-file (end = -1).
*/
int filemap_write_and_wait_range(struct address_space *mapping,
loff_t lstart, loff_t lend)
{
int err = 0;
if (mapping->nrpages) {
err = __filemap_fdatawrite_range(mapping, lstart, lend,
WB_SYNC_ALL);
/* See comment of filemap_write_and_wait() */
if (err != -EIO) {
int err2 = filemap_fdatawait_range(mapping,
lstart, lend);
if (!err)
err = err2;
}
}
return err;
}
EXPORT_SYMBOL(filemap_write_and_wait_range);
/**
* add_to_page_cache_locked - add a locked page to the pagecache
* @page: page to add
* @mapping: the page's address_space
* @offset: page index
* @gfp_mask: page allocation mode
*
* This function is used to add a page to the pagecache. It must be locked.
* This function does not add the page to the LRU. The caller must do that.
*/
int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
pgoff_t offset, gfp_t gfp_mask)
{
int error;
VM_BUG_ON(!PageLocked(page));
error = mem_cgroup_cache_charge(page, current->mm,
gfp_mask & GFP_RECLAIM_MASK);
if (error)
goto out;
error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
if (error == 0) {
page_cache_get(page);
page->mapping = mapping;
page->index = offset;
spin_lock_irq(&mapping->tree_lock);
error = radix_tree_insert(&mapping->page_tree, offset, page);
if (likely(!error)) {
mapping->nrpages++;
__inc_zone_page_state(page, NR_FILE_PAGES);
if (PageSwapBacked(page))
__inc_zone_page_state(page, NR_SHMEM);
spin_unlock_irq(&mapping->tree_lock);
} else {
page->mapping = NULL;
spin_unlock_irq(&mapping->tree_lock);
mem_cgroup_uncharge_cache_page(page);
page_cache_release(page);
}
radix_tree_preload_end();
} else
mem_cgroup_uncharge_cache_page(page);
out:
return error;
}
EXPORT_SYMBOL(add_to_page_cache_locked);
int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
pgoff_t offset, gfp_t gfp_mask)
{
int ret;
/*
* Splice_read and readahead add shmem/tmpfs pages into the page cache
* before shmem_readpage has a chance to mark them as SwapBacked: they
* need to go on the anon lru below, and mem_cgroup_cache_charge
* (called in add_to_page_cache) needs to know where they're going too.
*/
if (mapping_cap_swap_backed(mapping))
SetPageSwapBacked(page);
ret = add_to_page_cache(page, mapping, offset, gfp_mask);
if (ret == 0) {
if (page_is_file_cache(page))
lru_cache_add_file(page);
else
lru_cache_add_anon(page);
}
return ret;
}
EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
#ifdef CONFIG_NUMA
struct page *__page_cache_alloc(gfp_t gfp)
{
int n;
struct page *page;
if (cpuset_do_page_mem_spread()) {
get_mems_allowed();
n = cpuset_mem_spread_node();
page = alloc_pages_exact_node(n, gfp, 0);
put_mems_allowed();
return page;
}
return alloc_pages(gfp, 0);
}
EXPORT_SYMBOL(__page_cache_alloc);
#endif
static int __sleep_on_page_lock(void *word)
{
io_schedule();
return 0;
}
/*
* In order to wait for pages to become available there must be
* waitqueues associated with pages. By using a hash table of
* waitqueues where the bucket discipline is to maintain all
* waiters on the same queue and wake all when any of the pages
* become available, and for the woken contexts to check to be
* sure the appropriate page became available, this saves space
* at a cost of "thundering herd" phenomena during rare hash
* collisions.
*/
static wait_queue_head_t *page_waitqueue(struct page *page)
{
const struct zone *zone = page_zone(page);
return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
}
static inline void wake_up_page(struct page *page, int bit)
{
__wake_up_bit(page_waitqueue(page), &page->flags, bit);
}
void wait_on_page_bit(struct page *page, int bit_nr)
{
DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
if (test_bit(bit_nr, &page->flags))
__wait_on_bit(page_waitqueue(page), &wait, sync_page,
TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_on_page_bit);
/**
* add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
* @page: Page defining the wait queue of interest
* @waiter: Waiter to add to the queue
*
* Add an arbitrary @waiter to the wait queue for the nominated @page.
*/
void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
{
wait_queue_head_t *q = page_waitqueue(page);
unsigned long flags;
spin_lock_irqsave(&q->lock, flags);
__add_wait_queue(q, waiter);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(add_page_wait_queue);
/**
* unlock_page - unlock a locked page
* @page: the page
*
* Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
* Also wakes sleepers in wait_on_page_writeback() because the wakeup
* mechananism between PageLocked pages and PageWriteback pages is shared.
* But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
*
* The mb is necessary to enforce ordering between the clear_bit and the read
* of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
*/
void unlock_page(struct page *page)
{
VM_BUG_ON(!PageLocked(page));
clear_bit_unlock(PG_locked, &page->flags);
smp_mb__after_clear_bit();
wake_up_page(page, PG_locked);
}
EXPORT_SYMBOL(unlock_page);
/**
* end_page_writeback - end writeback against a page
* @page: the page
*/
void end_page_writeback(struct page *page)
{
if (TestClearPageReclaim(page))
rotate_reclaimable_page(page);
if (!test_clear_page_writeback(page))
BUG();
smp_mb__after_clear_bit();
wake_up_page(page, PG_writeback);
}
EXPORT_SYMBOL(end_page_writeback);
/**
* __lock_page - get a lock on the page, assuming we need to sleep to get it
* @page: the page to lock
*
* Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
* random driver's requestfn sets TASK_RUNNING, we could busywait. However
* chances are that on the second loop, the block layer's plug list is empty,
* so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
*/
void __lock_page(struct page *page)
{
DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(__lock_page);
int __lock_page_killable(struct page *page)
{
DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
return __wait_on_bit_lock(page_waitqueue(page), &wait,
sync_page_killable, TASK_KILLABLE);
}
EXPORT_SYMBOL_GPL(__lock_page_killable);
/**
* __lock_page_nosync - get a lock on the page, without calling sync_page()
* @page: the page to lock
*
* Variant of lock_page that does not require the caller to hold a reference
* on the page's mapping.
*/
void __lock_page_nosync(struct page *page)
{
DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
TASK_UNINTERRUPTIBLE);
}
/**
* find_get_page - find and get a page reference
* @mapping: the address_space to search
* @offset: the page index
*
* Is there a pagecache struct page at the given (mapping, offset) tuple?
* If yes, increment its refcount and return it; if no, return NULL.
*/
struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
{
void **pagep;
struct page *page;
rcu_read_lock();
repeat:
page = NULL;
pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
if (pagep) {
page = radix_tree_deref_slot(pagep);
if (unlikely(!page || page == RADIX_TREE_RETRY))
goto repeat;
if (!page_cache_get_speculative(page))
goto repeat;
/*
* Has the page moved?
* This is part of the lockless pagecache protocol. See
* include/linux/pagemap.h for details.
*/
if (unlikely(page != *pagep)) {
page_cache_release(page);
goto repeat;
}
}
rcu_read_unlock();
return page;
}
EXPORT_SYMBOL(find_get_page);
/**
* find_lock_page - locate, pin and lock a pagecache page
* @mapping: the address_space to search
* @offset: the page index
*
* Locates the desired pagecache page, locks it, increments its reference
* count and returns its address.
*
* Returns zero if the page was not present. find_lock_page() may sleep.
*/
struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
{
struct page *page;
repeat:
page = find_get_page(mapping, offset);
if (page) {
lock_page(page);
/* Has the page been truncated? */
if (unlikely(page->mapping != mapping)) {
unlock_page(page);
page_cache_release(page);
goto repeat;
}
VM_BUG_ON(page->index != offset);
}
return page;
}
EXPORT_SYMBOL(find_lock_page);
/**
* find_or_create_page - locate or add a pagecache page
* @mapping: the page's address_space
* @index: the page's index into the mapping
* @gfp_mask: page allocation mode
*
* Locates a page in the pagecache. If the page is not present, a new page
* is allocated using @gfp_mask and is added to the pagecache and to the VM's
* LRU list. The returned page is locked and has its reference count
* incremented.
*
* find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
* allocation!
*
* find_or_create_page() returns the desired page's address, or zero on
* memory exhaustion.
*/
struct page *find_or_create_page(struct address_space *mapping,
pgoff_t index, gfp_t gfp_mask)
{
struct page *page;
int err;
repeat:
page = find_lock_page(mapping, index);
if (!page) {
page = __page_cache_alloc(gfp_mask);
if (!page)
return NULL;
/*
* We want a regular kernel memory (not highmem or DMA etc)
* allocation for the radix tree nodes, but we need to honour
* the context-specific requirements the caller has asked for.
* GFP_RECLAIM_MASK collects those requirements.
*/
err = add_to_page_cache_lru(page, mapping, index,
(gfp_mask & GFP_RECLAIM_MASK));
if (unlikely(err)) {
page_cache_release(page);
page = NULL;
if (err == -EEXIST)
goto repeat;
}
}
return page;
}
EXPORT_SYMBOL(find_or_create_page);
/**
* find_get_pages - gang pagecache lookup
* @mapping: The address_space to search
* @start: The starting page index
* @nr_pages: The maximum number of pages
* @pages: Where the resulting pages are placed
*
* find_get_pages() will search for and return a group of up to
* @nr_pages pages in the mapping. The pages are placed at @pages.
* find_get_pages() takes a reference against the returned pages.
*
* The search returns a group of mapping-contiguous pages with ascending
* indexes. There may be holes in the indices due to not-present pages.
*
* find_get_pages() returns the number of pages which were found.
*/
unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
unsigned int nr_pages, struct page **pages)
{
unsigned int i;
unsigned int ret;
unsigned int nr_found;
rcu_read_lock();
restart:
nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
(void ***)pages, start, nr_pages);
ret = 0;
for (i = 0; i < nr_found; i++) {
struct page *page;
repeat:
page = radix_tree_deref_slot((void **)pages[i]);
if (unlikely(!page))
continue;
/*
* this can only trigger if nr_found == 1, making livelock
* a non issue.
*/
if (unlikely(page == RADIX_TREE_RETRY))
goto restart;
if (!page_cache_get_speculative(page))
goto repeat;
/* Has the page moved? */
if (unlikely(page != *((void **)pages[i]))) {
page_cache_release(page);
goto repeat;
}
pages[ret] = page;
ret++;
}
rcu_read_unlock();
return ret;
}
/**
* find_get_pages_contig - gang contiguous pagecache lookup
* @mapping: The address_space to search
* @index: The starting page index
* @nr_pages: The maximum number of pages
* @pages: Where the resulting pages are placed
*
* find_get_pages_contig() works exactly like find_get_pages(), except
* that the returned number of pages are guaranteed to be contiguous.
*
* find_get_pages_contig() returns the number of pages which were found.
*/
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
unsigned int nr_pages, struct page **pages)
{
unsigned int i;
unsigned int ret;
unsigned int nr_found;
rcu_read_lock();
restart:
nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
(void ***)pages, index, nr_pages);
ret = 0;
for (i = 0; i < nr_found; i++) {
struct page *page;
repeat:
page = radix_tree_deref_slot((void **)pages[i]);
if (unlikely(!page))
continue;
/*
* this can only trigger if nr_found == 1, making livelock
* a non issue.
*/
if (unlikely(page == RADIX_TREE_RETRY))
goto restart;
if (page->mapping == NULL || page->index != index)
break;
if (!page_cache_get_speculative(page))
goto repeat;
/* Has the page moved? */
if (unlikely(page != *((void **)pages[i]))) {
page_cache_release(page);
goto repeat;
}
pages[ret] = page;
ret++;
index++;
}
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL(find_get_pages_contig);
/**
* find_get_pages_tag - find and return pages that match @tag
* @mapping: the address_space to search
* @index: the starting page index
* @tag: the tag index
* @nr_pages: the maximum number of pages
* @pages: where the resulting pages are placed
*
* Like find_get_pages, except we only return pages which are tagged with
* @tag. We update @index to index the next page for the traversal.
*/
unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
int tag, unsigned int nr_pages, struct page **pages)
{
unsigned int i;
unsigned int ret;
unsigned int nr_found;
rcu_read_lock();
restart:
nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
(void ***)pages, *index, nr_pages, tag);
ret = 0;
for (i = 0; i < nr_found; i++) {
struct page *page;
repeat:
page = radix_tree_deref_slot((void **)pages[i]);
if (unlikely(!page))
continue;
/*
* this can only trigger if nr_found == 1, making livelock
* a non issue.
*/
if (unlikely(page == RADIX_TREE_RETRY))
goto restart;
if (!page_cache_get_speculative(page))
goto repeat;
/* Has the page moved? */
if (unlikely(page != *((void **)pages[i]))) {
page_cache_release(page);
goto repeat;
}
pages[ret] = page;
ret++;
}
rcu_read_unlock();
if (ret)
*index = pages[ret - 1]->index + 1;
return ret;
}
EXPORT_SYMBOL(find_get_pages_tag);
/**
* grab_cache_page_nowait - returns locked page at given index in given cache
* @mapping: target address_space
* @index: the page index
*
* Same as grab_cache_page(), but do not wait if the page is unavailable.
* This is intended for speculative data generators, where the data can
* be regenerated if the page couldn't be grabbed. This routine should
* be safe to call while holding the lock for another page.
*
* Clear __GFP_FS when allocating the page to avoid recursion into the fs
* and deadlock against the caller's locked page.
*/
struct page *
grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
{
struct page *page = find_get_page(mapping, index);
if (page) {
if (trylock_page(page))
return page;
page_cache_release(page);
return NULL;
}
page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
page_cache_release(page);
page = NULL;
}
return page;
}
EXPORT_SYMBOL(grab_cache_page_nowait);
/*
* CD/DVDs are error prone. When a medium error occurs, the driver may fail
* a _large_ part of the i/o request. Imagine the worst scenario:
*
* ---R__________________________________________B__________
* ^ reading here ^ bad block(assume 4k)
*
* read(R) => miss => readahead(R...B) => media error => frustrating retries
* => failing the whole request => read(R) => read(R+1) =>
* readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
* readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
* readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
*
* It is going insane. Fix it by quickly scaling down the readahead size.
*/
static void shrink_readahead_size_eio(struct file *filp,
struct file_ra_state *ra)
{
ra->ra_pages /= 4;
}
/**
* do_generic_file_read - generic file read routine
* @filp: the file to read
* @ppos: current file position
* @desc: read_descriptor
* @actor: read method
*
* This is a generic file read routine, and uses the
* mapping->a_ops->readpage() function for the actual low-level stuff.
*
* This is really ugly. But the goto's actually try to clarify some
* of the logic when it comes to error handling etc.
*/
static void do_generic_file_read(struct file *filp, loff_t *ppos,
read_descriptor_t *desc, read_actor_t actor)
{
struct address_space *mapping = filp->f_mapping;
struct inode *inode = mapping->host;
struct file_ra_state *ra = &filp->f_ra;
pgoff_t index;
pgoff_t last_index;
pgoff_t prev_index;
unsigned long offset; /* offset into pagecache page */
unsigned int prev_offset;
int error;
index = *ppos >> PAGE_CACHE_SHIFT;
prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
offset = *ppos & ~PAGE_CACHE_MASK;
for (;;) {
struct page *page;
pgoff_t end_index;
loff_t isize;
unsigned long nr, ret;
cond_resched();
find_page:
page = find_get_page(mapping, index);
if (!page) {