forked from twistedfall/opencv-rust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sfm.rs
1160 lines (1092 loc) · 61.5 KB
/
sfm.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
pub mod sfm {
//! # Structure From Motion
//!
//! The opencv_sfm module contains algorithms to perform 3d reconstruction
//! from 2d images.
//!
//! The core of the module is based on a light version of
//! [Libmv](https://developer.blender.org/project/profile/59) originally
//! developed by Sameer Agarwal and Keir Mierle.
//!
//! __Whats is libmv?__
//!
//! libmv, also known as the Library for Multiview Reconstruction (or LMV),
//! is the computer vision backend for Blender's motion tracking abilities.
//! Unlike other vision libraries with general ambitions, libmv is focused
//! on algorithms for match moving, specifically targeting [Blender](https://developer.blender.org) as the
//! primary customer. Dense reconstruction, reconstruction from unorganized
//! photo collections, image recognition, and other tasks are not a focus
//! of libmv.
//!
//! __Development__
//!
//! libmv is officially under the Blender umbrella, and so is developed
//! on developer.blender.org. The [source repository](https://developer.blender.org/diffusion/LMV) can get checked out
//! independently from Blender.
//!
//! This module has been originally developed as a project for Google Summer of Code 2012-2015.
//!
//!
//! Note:
//! - Notice that it is compiled only when Eigen, GLog and GFlags are correctly installed.
//!
//! Check installation instructions in the following tutorial: [tutorial_sfm_installation]
//! # Conditioning
//! # Fundamental
//! # Input/Output
//! # Numeric
//! # Projection
//! # Robust Estimation
//! # Triangulation
//!
//! # Reconstruction
//!
//! Note:
//! - Notice that it is compiled only when Ceres Solver is correctly installed.
//!
//! Check installation instructions in the following tutorial: [tutorial_sfm_installation]
//!
//!
//! # Simple Pipeline
//!
//! Note:
//! - Notice that it is compiled only when Ceres Solver is correctly installed.
//!
//! Check installation instructions in the following tutorial: [tutorial_sfm_installation]
use crate::{mod_prelude::*, core, sys, types};
pub mod prelude {
pub use { super::BaseSFMConst, super::BaseSFM, super::SFMLibmvEuclideanReconstructionConst, super::SFMLibmvEuclideanReconstruction };
}
pub const SFM_DISTORTION_MODEL_DIVISION: i32 = 1;
pub const SFM_DISTORTION_MODEL_POLYNOMIAL: i32 = 0;
pub const SFM_IO_BUNDLER: i32 = 0;
pub const SFM_IO_OPENMVG: i32 = 3;
pub const SFM_IO_OPENSFM: i32 = 2;
pub const SFM_IO_THEIASFM: i32 = 4;
pub const SFM_IO_VISUALSFM: i32 = 1;
pub const SFM_REFINE_FOCAL_LENGTH: i32 = 1;
pub const SFM_REFINE_PRINCIPAL_POINT: i32 = 2;
pub const SFM_REFINE_RADIAL_DISTORTION_K1: i32 = 4;
pub const SFM_REFINE_RADIAL_DISTORTION_K2: i32 = 16;
/// Get K, R and t from projection matrix P, decompose using the RQ decomposition.
/// ## Parameters
/// * P: Input 3x4 projection matrix.
/// * K: Output 3x3 camera matrix ![inline formula](https://latex.codecogs.com/png.latex?K%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D).
/// * R: Output 3x3 rotation matrix.
/// * t: Output 3x1 translation vector.
///
/// Reference: [HartleyZ00](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_HartleyZ00) A4.1.1 pag.579
#[inline]
pub fn k_rt_from_projection(p: &dyn core::ToInputArray, k: &mut dyn core::ToOutputArray, r: &mut dyn core::ToOutputArray, t: &mut dyn core::ToOutputArray) -> Result<()> {
extern_container_arg!(p);
extern_container_arg!(k);
extern_container_arg!(r);
extern_container_arg!(t);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_KRtFromProjection_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(p.as_raw__InputArray(), k.as_raw__OutputArray(), r.as_raw__OutputArray(), t.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Apply Transformation to points.
/// ## Parameters
/// * points: Input vector of N-dimensional points.
/// * T: Input 3x3 transformation matrix such that ![inline formula](https://latex.codecogs.com/png.latex?x%20%3D%20T%2AX), where ![inline formula](https://latex.codecogs.com/png.latex?X) are the points to transform and ![inline formula](https://latex.codecogs.com/png.latex?x) the transformed points.
/// * transformed_points: Output vector of N-dimensional transformed points.
#[inline]
pub fn apply_transformation_to_points(points: &dyn core::ToInputArray, t: &dyn core::ToInputArray, transformed_points: &mut dyn core::ToOutputArray) -> Result<()> {
extern_container_arg!(points);
extern_container_arg!(t);
extern_container_arg!(transformed_points);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_applyTransformationToPoints_const__InputArrayR_const__InputArrayR_const__OutputArrayR(points.as_raw__InputArray(), t.as_raw__InputArray(), transformed_points.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Computes Absolute or Exterior Orientation (Pose Estimation) between 2 sets of 3D point.
/// ## Parameters
/// * x1: Input first 3xN or 2xN array of points.
/// * x2: Input second 3xN or 2xN array of points.
/// * R: Output 3x3 computed rotation matrix.
/// * t: Output 3x1 computed translation vector.
/// * s: Output computed scale factor.
///
/// Find the best transformation such that xp=projection*(s*R*x+t) (same as Pose Estimation, ePNP).
/// The routines below are only for the orthographic case for now.
#[inline]
pub fn compute_orientation(x1: &dyn core::ToInputArray, x2: &dyn core::ToInputArray, r: &mut dyn core::ToOutputArray, t: &mut dyn core::ToOutputArray, s: f64) -> Result<()> {
extern_container_arg!(x1);
extern_container_arg!(x2);
extern_container_arg!(r);
extern_container_arg!(t);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_computeOrientation_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_double(x1.as_raw__InputArray(), x2.as_raw__InputArray(), r.as_raw__OutputArray(), t.as_raw__OutputArray(), s, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Returns the depth of a point transformed by a rigid transform.
/// ## Parameters
/// * R: Input 3x3 rotation matrix.
/// * t: Input 3x1 translation vector.
/// * X: Input 3x1 or 4x1 vector with the 3d point.
#[inline]
pub fn depth(r: &dyn core::ToInputArray, t: &dyn core::ToInputArray, x: &dyn core::ToInputArray) -> Result<f64> {
extern_container_arg!(r);
extern_container_arg!(t);
extern_container_arg!(x);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_depth_const__InputArrayR_const__InputArrayR_const__InputArrayR(r.as_raw__InputArray(), t.as_raw__InputArray(), x.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Get Essential matrix from Fundamental and Camera matrices.
/// ## Parameters
/// * F: Input 3x3 fundamental matrix.
/// * K1: Input 3x3 first camera matrix ![inline formula](https://latex.codecogs.com/png.latex?K%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D).
/// * K2: Input 3x3 second camera matrix. The parameters are similar to K1.
/// * E: Output 3x3 essential matrix.
///
/// Reference: [HartleyZ00](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_HartleyZ00) 9.6 pag 257 (formula 9.12)
#[inline]
pub fn essential_from_fundamental(f: &dyn core::ToInputArray, k1: &dyn core::ToInputArray, k2: &dyn core::ToInputArray, e: &mut dyn core::ToOutputArray) -> Result<()> {
extern_container_arg!(f);
extern_container_arg!(k1);
extern_container_arg!(k2);
extern_container_arg!(e);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_essentialFromFundamental_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR(f.as_raw__InputArray(), k1.as_raw__InputArray(), k2.as_raw__InputArray(), e.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Get Essential matrix from Motion (R's and t's ).
/// ## Parameters
/// * R1: Input 3x3 first camera rotation matrix.
/// * t1: Input 3x1 first camera translation vector.
/// * R2: Input 3x3 second camera rotation matrix.
/// * t2: Input 3x1 second camera translation vector.
/// * E: Output 3x3 essential matrix.
///
/// Reference: [HartleyZ00](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_HartleyZ00) 9.6 pag 257 (formula 9.12)
#[inline]
pub fn essential_from_rt(r1: &dyn core::ToInputArray, t1: &dyn core::ToInputArray, r2: &dyn core::ToInputArray, t2: &dyn core::ToInputArray, e: &mut dyn core::ToOutputArray) -> Result<()> {
extern_container_arg!(r1);
extern_container_arg!(t1);
extern_container_arg!(r2);
extern_container_arg!(t2);
extern_container_arg!(e);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_essentialFromRt_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR(r1.as_raw__InputArray(), t1.as_raw__InputArray(), r2.as_raw__InputArray(), t2.as_raw__InputArray(), e.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Converts points from Euclidean to homogeneous space. E.g., ((x,y)->(x,y,1))
/// ## Parameters
/// * src: Input vector of N-dimensional points.
/// * dst: Output vector of N+1-dimensional points.
#[inline]
pub fn euclidean_to_homogeneous(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray) -> Result<()> {
extern_container_arg!(src);
extern_container_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_euclideanToHomogeneous_const__InputArrayR_const__OutputArrayR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Estimate robustly the fundamental matrix between two dataset of 2D point (image coords space).
/// ## Parameters
/// * x1: Input 2xN Array of 2D points in view 1.
/// * x2: Input 2xN Array of 2D points in view 2.
/// * max_error: maximum error (in pixels).
/// * F: Output 3x3 fundamental matrix such that ![inline formula](https://latex.codecogs.com/png.latex?x%5F2%5ET%20F%20x%5F1%3D0).
/// * inliers: Output 1xN vector that contains the indexes of the detected inliers.
/// * outliers_probability: outliers probability (in ]0,1[).
/// The number of iterations is controlled using the following equation:
/// ![inline formula](https://latex.codecogs.com/png.latex?k%20%3D%20%5Cfrac%7Blog%281%2Dp%29%7D%7Blog%281%2E0%20%2D%20w%5En%20%29%7D) where ![inline formula](https://latex.codecogs.com/png.latex?k), ![inline formula](https://latex.codecogs.com/png.latex?w) and ![inline formula](https://latex.codecogs.com/png.latex?n) are the number of
/// iterations, the inliers ratio and minimun number of selected independent samples.
/// The more this value is high, the less the function selects ramdom samples.
///
/// The fundamental solver relies on the 7 point solution. Returns the best error (in pixels), associated to the solution F.
///
/// ## C++ default parameters
/// * outliers_probability: 1e-2
#[inline]
pub fn fundamental_from_correspondences7_point_robust(x1: &dyn core::ToInputArray, x2: &dyn core::ToInputArray, max_error: f64, f: &mut dyn core::ToOutputArray, inliers: &mut dyn core::ToOutputArray, outliers_probability: f64) -> Result<f64> {
extern_container_arg!(x1);
extern_container_arg!(x2);
extern_container_arg!(f);
extern_container_arg!(inliers);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_fundamentalFromCorrespondences7PointRobust_const__InputArrayR_const__InputArrayR_double_const__OutputArrayR_const__OutputArrayR_double(x1.as_raw__InputArray(), x2.as_raw__InputArray(), max_error, f.as_raw__OutputArray(), inliers.as_raw__OutputArray(), outliers_probability, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Estimate robustly the fundamental matrix between two dataset of 2D point (image coords space).
/// ## Parameters
/// * x1: Input 2xN Array of 2D points in view 1.
/// * x2: Input 2xN Array of 2D points in view 2.
/// * max_error: maximum error (in pixels).
/// * F: Output 3x3 fundamental matrix such that ![inline formula](https://latex.codecogs.com/png.latex?x%5F2%5ET%20F%20x%5F1%3D0).
/// * inliers: Output 1xN vector that contains the indexes of the detected inliers.
/// * outliers_probability: outliers probability (in ]0,1[).
/// The number of iterations is controlled using the following equation:
/// ![inline formula](https://latex.codecogs.com/png.latex?k%20%3D%20%5Cfrac%7Blog%281%2Dp%29%7D%7Blog%281%2E0%20%2D%20w%5En%20%29%7D) where ![inline formula](https://latex.codecogs.com/png.latex?k), ![inline formula](https://latex.codecogs.com/png.latex?w) and ![inline formula](https://latex.codecogs.com/png.latex?n) are the number of
/// iterations, the inliers ratio and minimun number of selected independent samples.
/// The more this value is high, the less the function selects ramdom samples.
///
/// The fundamental solver relies on the 8 point solution. Returns the best error (in pixels), associated to the solution F.
///
/// ## C++ default parameters
/// * outliers_probability: 1e-2
#[inline]
pub fn fundamental_from_correspondences8_point_robust(x1: &dyn core::ToInputArray, x2: &dyn core::ToInputArray, max_error: f64, f: &mut dyn core::ToOutputArray, inliers: &mut dyn core::ToOutputArray, outliers_probability: f64) -> Result<f64> {
extern_container_arg!(x1);
extern_container_arg!(x2);
extern_container_arg!(f);
extern_container_arg!(inliers);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_fundamentalFromCorrespondences8PointRobust_const__InputArrayR_const__InputArrayR_double_const__OutputArrayR_const__OutputArrayR_double(x1.as_raw__InputArray(), x2.as_raw__InputArray(), max_error, f.as_raw__OutputArray(), inliers.as_raw__OutputArray(), outliers_probability, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Get Essential matrix from Fundamental and Camera matrices.
/// ## Parameters
/// * E: Input 3x3 essential matrix.
/// * K1: Input 3x3 first camera matrix ![inline formula](https://latex.codecogs.com/png.latex?K%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D).
/// * K2: Input 3x3 second camera matrix. The parameters are similar to K1.
/// * F: Output 3x3 fundamental matrix.
///
/// Reference: [HartleyZ00](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_HartleyZ00) 9.6 pag 257 (formula 9.12) or <http://ai.stanford.edu/~birch/projective/node20.html>
#[inline]
pub fn fundamental_from_essential(e: &dyn core::ToInputArray, k1: &dyn core::ToInputArray, k2: &dyn core::ToInputArray, f: &mut dyn core::ToOutputArray) -> Result<()> {
extern_container_arg!(e);
extern_container_arg!(k1);
extern_container_arg!(k2);
extern_container_arg!(f);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_fundamentalFromEssential_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR(e.as_raw__InputArray(), k1.as_raw__InputArray(), k2.as_raw__InputArray(), f.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Get Fundamental matrix from Projection matrices.
/// ## Parameters
/// * P1: Input 3x4 first projection matrix.
/// * P2: Input 3x4 second projection matrix.
/// * F: Output 3x3 fundamental matrix.
#[inline]
pub fn fundamental_from_projections(p1: &dyn core::ToInputArray, p2: &dyn core::ToInputArray, f: &mut dyn core::ToOutputArray) -> Result<()> {
extern_container_arg!(p1);
extern_container_arg!(p2);
extern_container_arg!(f);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_fundamentalFromProjections_const__InputArrayR_const__InputArrayR_const__OutputArrayR(p1.as_raw__InputArray(), p2.as_raw__InputArray(), f.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Converts point coordinates from homogeneous to euclidean pixel coordinates. E.g., ((x,y,z)->(x/z, y/z))
/// ## Parameters
/// * src: Input vector of N-dimensional points.
/// * dst: Output vector of N-1-dimensional points.
#[inline]
pub fn homogeneous_to_euclidean(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray) -> Result<()> {
extern_container_arg!(src);
extern_container_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_homogeneousToEuclidean_const__InputArrayR_const__OutputArrayR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Import a reconstruction file.
/// ## Parameters
/// * file: The path to the file.
/// * Rs: Output vector of 3x3 rotations of the camera
/// * Ts: Output vector of 3x1 translations of the camera.
/// * Ks: Output vector of 3x3 instrinsics of the camera.
/// * points3d: Output array with 3d points. Is 3 x N.
/// * file_format: The format of the file to import.
///
/// The function supports reconstructions from Bundler.
///
/// ## C++ default parameters
/// * file_format: SFM_IO_BUNDLER
#[inline]
pub fn import_reconstruction(file: &str, rs: &mut dyn core::ToOutputArray, ts: &mut dyn core::ToOutputArray, ks: &mut dyn core::ToOutputArray, points3d: &mut dyn core::ToOutputArray, file_format: i32) -> Result<()> {
extern_container_arg!(file);
extern_container_arg!(rs);
extern_container_arg!(ts);
extern_container_arg!(ks);
extern_container_arg!(points3d);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_importReconstruction_const_StringR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_int(file.opencv_as_extern(), rs.as_raw__OutputArray(), ts.as_raw__OutputArray(), ks.as_raw__OutputArray(), points3d.as_raw__OutputArray(), file_format, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Point conditioning (isotropic).
/// ## Parameters
/// * points: Input vector of N-dimensional points.
/// * T: Output 3x3 transformation matrix.
///
/// Computes the transformation matrix such that each coordinate direction will be scaled equally,
/// bringing the centroid to the origin with an average centroid ![inline formula](https://latex.codecogs.com/png.latex?%281%2C1%2C1%29%5ET).
///
/// Reference: [HartleyZ00](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_HartleyZ00) 4.4.4 pag.107.
#[inline]
pub fn isotropic_preconditioner_from_points(points: &dyn core::ToInputArray, t: &mut dyn core::ToOutputArray) -> Result<()> {
extern_container_arg!(points);
extern_container_arg!(t);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_isotropicPreconditionerFromPoints_const__InputArrayR_const__OutputArrayR(points.as_raw__InputArray(), t.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Computes the mean and variance of a given matrix along its rows.
/// ## Parameters
/// * A: Input NxN matrix.
/// * mean: Output Nx1 matrix with computed mean.
/// * variance: Output Nx1 matrix with computed variance.
///
/// It computes in the same way as woud do [reduce] but with \a Variance function.
#[inline]
pub fn mean_and_variance_along_rows(a: &dyn core::ToInputArray, mean: &mut dyn core::ToOutputArray, variance: &mut dyn core::ToOutputArray) -> Result<()> {
extern_container_arg!(a);
extern_container_arg!(mean);
extern_container_arg!(variance);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_meanAndVarianceAlongRows_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(a.as_raw__InputArray(), mean.as_raw__OutputArray(), variance.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Choose one of the four possible motion solutions from an essential matrix.
/// ## Parameters
/// * Rs: Input vector of 3x3 rotation matrices.
/// * ts: Input vector of 3x1 translation vectors.
/// * K1: Input 3x3 first camera matrix ![inline formula](https://latex.codecogs.com/png.latex?K%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D).
/// * x1: Input 2x1 vector with first 2d point.
/// * K2: Input 3x3 second camera matrix. The parameters are similar to K1.
/// * x2: Input 2x1 vector with second 2d point.
///
/// Decides the right solution by checking that the triangulation of a match
/// x1--x2 lies in front of the cameras. Return index of the right solution or -1 if no solution.
///
/// Reference: See [HartleyZ00](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_HartleyZ00) 9.6 pag 259 (9.6.3 Geometrical interpretation of the 4 solutions).
#[inline]
pub fn motion_from_essential_choose_solution(rs: &dyn core::ToInputArray, ts: &dyn core::ToInputArray, k1: &dyn core::ToInputArray, x1: &dyn core::ToInputArray, k2: &dyn core::ToInputArray, x2: &dyn core::ToInputArray) -> Result<i32> {
extern_container_arg!(rs);
extern_container_arg!(ts);
extern_container_arg!(k1);
extern_container_arg!(x1);
extern_container_arg!(k2);
extern_container_arg!(x2);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_motionFromEssentialChooseSolution_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR(rs.as_raw__InputArray(), ts.as_raw__InputArray(), k1.as_raw__InputArray(), x1.as_raw__InputArray(), k2.as_raw__InputArray(), x2.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Get Motion (R's and t's ) from Essential matrix.
/// ## Parameters
/// * E: Input 3x3 essential matrix.
/// * Rs: Output vector of 3x3 rotation matrices.
/// * ts: Output vector of 3x1 translation vectors.
///
/// Reference: [HartleyZ00](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_HartleyZ00) 9.6 pag 259 (Result 9.19)
#[inline]
pub fn motion_from_essential(e: &dyn core::ToInputArray, rs: &mut dyn core::ToOutputArray, ts: &mut dyn core::ToOutputArray) -> Result<()> {
extern_container_arg!(e);
extern_container_arg!(rs);
extern_container_arg!(ts);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_motionFromEssential_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(e.as_raw__InputArray(), rs.as_raw__OutputArray(), ts.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Normalizes the Fundamental matrix.
/// ## Parameters
/// * F: Input 3x3 fundamental matrix.
/// * F_normalized: Output 3x3 normalized fundamental matrix.
///
/// By default divides the fundamental matrix by its L2 norm.
#[inline]
pub fn normalize_fundamental(f: &dyn core::ToInputArray, f_normalized: &mut dyn core::ToOutputArray) -> Result<()> {
extern_container_arg!(f);
extern_container_arg!(f_normalized);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_normalizeFundamental_const__InputArrayR_const__OutputArrayR(f.as_raw__InputArray(), f_normalized.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// This function normalizes points. (isotropic).
/// ## Parameters
/// * points: Input vector of N-dimensional points.
/// * normalized_points: Output vector of the same N-dimensional points but with mean 0 and average norm ![inline formula](https://latex.codecogs.com/png.latex?%5Csqrt%7B2%7D).
/// * T: Output 3x3 transform matrix such that ![inline formula](https://latex.codecogs.com/png.latex?x%20%3D%20T%2AX), where ![inline formula](https://latex.codecogs.com/png.latex?X) are the points to normalize and ![inline formula](https://latex.codecogs.com/png.latex?x) the normalized points.
///
/// Internally calls [preconditionerFromPoints] in order to get the scaling matrix before applying [applyTransformationToPoints].
/// This operation is an essential step before applying the DLT algorithm in order to consider the result as optimal.
///
/// Reference: [HartleyZ00](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_HartleyZ00) 4.4.4 pag.107.
#[inline]
pub fn normalize_isotropic_points(points: &dyn core::ToInputArray, normalized_points: &mut dyn core::ToOutputArray, t: &mut dyn core::ToOutputArray) -> Result<()> {
extern_container_arg!(points);
extern_container_arg!(normalized_points);
extern_container_arg!(t);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_normalizeIsotropicPoints_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(points.as_raw__InputArray(), normalized_points.as_raw__OutputArray(), t.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// This function normalizes points (non isotropic).
/// ## Parameters
/// * points: Input vector of N-dimensional points.
/// * normalized_points: Output vector of the same N-dimensional points but with mean 0 and average norm ![inline formula](https://latex.codecogs.com/png.latex?%5Csqrt%7B2%7D).
/// * T: Output 3x3 transform matrix such that ![inline formula](https://latex.codecogs.com/png.latex?x%20%3D%20T%2AX), where ![inline formula](https://latex.codecogs.com/png.latex?X) are the points to normalize and ![inline formula](https://latex.codecogs.com/png.latex?x) the normalized points.
///
/// Internally calls [preconditionerFromPoints] in order to get the scaling matrix before applying [applyTransformationToPoints].
/// This operation is an essential step before applying the DLT algorithm in order to consider the result as optimal.
///
/// Reference: [HartleyZ00](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_HartleyZ00) 4.4.4 pag.109
#[inline]
pub fn normalize_points(points: &dyn core::ToInputArray, normalized_points: &mut dyn core::ToOutputArray, t: &mut dyn core::ToOutputArray) -> Result<()> {
extern_container_arg!(points);
extern_container_arg!(normalized_points);
extern_container_arg!(t);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_normalizePoints_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(points.as_raw__InputArray(), normalized_points.as_raw__OutputArray(), t.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Estimate the fundamental matrix between two dataset of 2D point (image coords space).
/// ## Parameters
/// * x1: Input 2xN Array of 2D points in view 1.
/// * x2: Input 2xN Array of 2D points in view 2.
/// * F: Output 3x3 fundamental matrix.
///
/// Uses the normalized 8-point fundamental matrix solver.
/// Reference: [HartleyZ00](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_HartleyZ00) 11.2 pag.281 (x1 = x, x2 = x')
#[inline]
pub fn normalized_eight_point_solver(x1: &dyn core::ToInputArray, x2: &dyn core::ToInputArray, f: &mut dyn core::ToOutputArray) -> Result<()> {
extern_container_arg!(x1);
extern_container_arg!(x2);
extern_container_arg!(f);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_normalizedEightPointSolver_const__InputArrayR_const__InputArrayR_const__OutputArrayR(x1.as_raw__InputArray(), x2.as_raw__InputArray(), f.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Point conditioning (non isotropic).
/// ## Parameters
/// * points: Input vector of N-dimensional points.
/// * T: Output 3x3 transformation matrix.
///
/// Computes the transformation matrix such that the two principal moments of the set of points are equal to unity,
/// forming an approximately symmetric circular cloud of points of radius 1 about the origin.
///
/// Reference: [HartleyZ00](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_HartleyZ00) 4.4.4 pag.109
#[inline]
pub fn preconditioner_from_points(points: &dyn core::ToInputArray, t: &mut dyn core::ToOutputArray) -> Result<()> {
extern_container_arg!(points);
extern_container_arg!(t);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_preconditionerFromPoints_const__InputArrayR_const__OutputArrayR(points.as_raw__InputArray(), t.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Get projection matrix P from K, R and t.
/// ## Parameters
/// * K: Input 3x3 camera matrix ![inline formula](https://latex.codecogs.com/png.latex?K%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D).
/// * R: Input 3x3 rotation matrix.
/// * t: Input 3x1 translation vector.
/// * P: Output 3x4 projection matrix.
///
/// This function estimate the projection matrix by solving the following equation: ![inline formula](https://latex.codecogs.com/png.latex?P%20%3D%20K%20%2A%20%5BR%7Ct%5D)
#[inline]
pub fn projection_from_k_rt(k: &dyn core::ToInputArray, r: &dyn core::ToInputArray, t: &dyn core::ToInputArray, p: &mut dyn core::ToOutputArray) -> Result<()> {
extern_container_arg!(k);
extern_container_arg!(r);
extern_container_arg!(t);
extern_container_arg!(p);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_projectionFromKRt_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR(k.as_raw__InputArray(), r.as_raw__InputArray(), t.as_raw__InputArray(), p.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Get projection matrices from Fundamental matrix
/// ## Parameters
/// * F: Input 3x3 fundamental matrix.
/// * P1: Output 3x4 one possible projection matrix.
/// * P2: Output 3x4 another possible projection matrix.
#[inline]
pub fn projections_from_fundamental(f: &dyn core::ToInputArray, p1: &mut dyn core::ToOutputArray, p2: &mut dyn core::ToOutputArray) -> Result<()> {
extern_container_arg!(f);
extern_container_arg!(p1);
extern_container_arg!(p2);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_projectionsFromFundamental_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(f.as_raw__InputArray(), p1.as_raw__OutputArray(), p2.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Reconstruct 3d points from 2d correspondences while performing autocalibration.
/// ## Parameters
/// * points2d: Input vector of vectors of 2d points (the inner vector is per image).
/// * Ps: Output vector with the 3x4 projections matrices of each image.
/// * points3d: Output array with estimated 3d points.
/// * K: Input/Output camera matrix ![inline formula](https://latex.codecogs.com/png.latex?K%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D). Input parameters used as initial guess.
/// * is_projective: if true, the cameras are supposed to be projective.
///
/// This method calls below signature and extracts projection matrices from estimated K, R and t.
///
///
/// Note:
/// - Tracks must be as precise as possible. It does not handle outliers and is very sensible to them.
///
/// ## C++ default parameters
/// * is_projective: false
#[inline]
pub fn reconstruct(points2d: &dyn core::ToInputArray, ps: &mut dyn core::ToOutputArray, points3d: &mut dyn core::ToOutputArray, k: &mut dyn core::ToInputOutputArray, is_projective: bool) -> Result<()> {
extern_container_arg!(points2d);
extern_container_arg!(ps);
extern_container_arg!(points3d);
extern_container_arg!(k);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_reconstruct_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__InputOutputArrayR_bool(points2d.as_raw__InputArray(), ps.as_raw__OutputArray(), points3d.as_raw__OutputArray(), k.as_raw__InputOutputArray(), is_projective, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Reconstruct 3d points from 2d correspondences while performing autocalibration.
/// ## Parameters
/// * points2d: Input vector of vectors of 2d points (the inner vector is per image).
/// * Rs: Output vector of 3x3 rotations of the camera.
/// * Ts: Output vector of 3x1 translations of the camera.
/// * points3d: Output array with estimated 3d points.
/// * K: Input/Output camera matrix ![inline formula](https://latex.codecogs.com/png.latex?K%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D). Input parameters used as initial guess.
/// * is_projective: if true, the cameras are supposed to be projective.
///
/// Internally calls libmv simple pipeline routine with some default parameters by instatiating SFMLibmvEuclideanReconstruction class.
///
///
/// Note:
/// - Tracks must be as precise as possible. It does not handle outliers and is very sensible to them.
/// - To see a working example for camera motion reconstruction, check the following tutorial: [tutorial_sfm_trajectory_estimation].
///
/// ## C++ default parameters
/// * is_projective: false
#[inline]
pub fn reconstruct_1(points2d: &dyn core::ToInputArray, rs: &mut dyn core::ToOutputArray, ts: &mut dyn core::ToOutputArray, k: &mut dyn core::ToInputOutputArray, points3d: &mut dyn core::ToOutputArray, is_projective: bool) -> Result<()> {
extern_container_arg!(points2d);
extern_container_arg!(rs);
extern_container_arg!(ts);
extern_container_arg!(k);
extern_container_arg!(points3d);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_reconstruct_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__InputOutputArrayR_const__OutputArrayR_bool(points2d.as_raw__InputArray(), rs.as_raw__OutputArray(), ts.as_raw__OutputArray(), k.as_raw__InputOutputArray(), points3d.as_raw__OutputArray(), is_projective, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Reconstruct 3d points from 2d images while performing autocalibration.
/// ## Parameters
/// * images: a vector of string with the images paths.
/// * Ps: Output vector with the 3x4 projections matrices of each image.
/// * points3d: Output array with estimated 3d points.
/// * K: Input/Output camera matrix ![inline formula](https://latex.codecogs.com/png.latex?K%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D). Input parameters used as initial guess.
/// * is_projective: if true, the cameras are supposed to be projective.
///
/// This method calls below signature and extracts projection matrices from estimated K, R and t.
///
///
/// Note:
/// - The images must be ordered as they were an image sequence. Additionally, each frame should be as close as posible to the previous and posterior.
/// - For now DAISY features are used in order to compute the 2d points tracks and it only works for 3-4 images.
///
/// ## C++ default parameters
/// * is_projective: false
#[inline]
pub fn reconstruct_2(images: core::Vector<String>, ps: &mut dyn core::ToOutputArray, points3d: &mut dyn core::ToOutputArray, k: &mut dyn core::ToInputOutputArray, is_projective: bool) -> Result<()> {
extern_container_arg!(ps);
extern_container_arg!(points3d);
extern_container_arg!(k);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_reconstruct_const_vectorLStringG_const__OutputArrayR_const__OutputArrayR_const__InputOutputArrayR_bool(images.as_raw_VectorOfString(), ps.as_raw__OutputArray(), points3d.as_raw__OutputArray(), k.as_raw__InputOutputArray(), is_projective, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Reconstruct 3d points from 2d images while performing autocalibration.
/// ## Parameters
/// * images: a vector of string with the images paths.
/// * Rs: Output vector of 3x3 rotations of the camera.
/// * Ts: Output vector of 3x1 translations of the camera.
/// * points3d: Output array with estimated 3d points.
/// * K: Input/Output camera matrix ![inline formula](https://latex.codecogs.com/png.latex?K%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D). Input parameters used as initial guess.
/// * is_projective: if true, the cameras are supposed to be projective.
///
/// Internally calls libmv simple pipeline routine with some default parameters by instatiating SFMLibmvEuclideanReconstruction class.
///
///
/// Note:
/// - The images must be ordered as they were an image sequence. Additionally, each frame should be as close as posible to the previous and posterior.
/// - For now DAISY features are used in order to compute the 2d points tracks and it only works for 3-4 images.
/// - To see a working example for scene reconstruction, check the following tutorial: [tutorial_sfm_scene_reconstruction].
///
/// ## C++ default parameters
/// * is_projective: false
#[inline]
pub fn reconstruct_3(images: core::Vector<String>, rs: &mut dyn core::ToOutputArray, ts: &mut dyn core::ToOutputArray, k: &mut dyn core::ToInputOutputArray, points3d: &mut dyn core::ToOutputArray, is_projective: bool) -> Result<()> {
extern_container_arg!(rs);
extern_container_arg!(ts);
extern_container_arg!(k);
extern_container_arg!(points3d);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_reconstruct_const_vectorLStringG_const__OutputArrayR_const__OutputArrayR_const__InputOutputArrayR_const__OutputArrayR_bool(images.as_raw_VectorOfString(), rs.as_raw__OutputArray(), ts.as_raw__OutputArray(), k.as_raw__InputOutputArray(), points3d.as_raw__OutputArray(), is_projective, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Computes the relative camera motion between two cameras.
/// ## Parameters
/// * R1: Input 3x3 first camera rotation matrix.
/// * t1: Input 3x1 first camera translation vector.
/// * R2: Input 3x3 second camera rotation matrix.
/// * t2: Input 3x1 second camera translation vector.
/// * R: Output 3x3 relative rotation matrix.
/// * t: Output 3x1 relative translation vector.
///
/// Given the motion parameters of two cameras, computes the motion parameters
/// of the second one assuming the first one to be at the origin.
/// If T1 and T2 are the camera motions, the computed relative motion is ![inline formula](https://latex.codecogs.com/png.latex?T%20%3D%20T%5F2%20T%5F1%5E%7B%2D1%7D)
#[inline]
pub fn relative_camera_motion(r1: &dyn core::ToInputArray, t1: &dyn core::ToInputArray, r2: &dyn core::ToInputArray, t2: &dyn core::ToInputArray, r: &mut dyn core::ToOutputArray, t: &mut dyn core::ToOutputArray) -> Result<()> {
extern_container_arg!(r1);
extern_container_arg!(t1);
extern_container_arg!(r2);
extern_container_arg!(t2);
extern_container_arg!(r);
extern_container_arg!(t);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_relativeCameraMotion_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(r1.as_raw__InputArray(), t1.as_raw__InputArray(), r2.as_raw__InputArray(), t2.as_raw__InputArray(), r.as_raw__OutputArray(), t.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Returns the 3x3 skew symmetric matrix of a vector.
/// ## Parameters
/// * x: Input 3x1 vector.
///
/// Reference: [HartleyZ00](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_HartleyZ00), p581, equation (A4.5).
#[inline]
pub fn skew(x: &dyn core::ToInputArray) -> Result<core::Mat> {
extern_container_arg!(x);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_skew_const__InputArrayR(x.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { core::Mat::opencv_from_extern(ret) };
Ok(ret)
}
/// Reconstructs bunch of points by triangulation.
/// ## Parameters
/// * points2d: Input vector of vectors of 2d points (the inner vector is per image). Has to be 2 X N.
/// * projection_matrices: Input vector with 3x4 projections matrices of each image.
/// * points3d: Output array with computed 3d points. Is 3 x N.
///
/// Triangulates the 3d position of 2d correspondences between several images.
/// Reference: Internally it uses DLT method [HartleyZ00](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_HartleyZ00) 12.2 pag.312
#[inline]
pub fn triangulate_points(points2d: &dyn core::ToInputArray, projection_matrices: &dyn core::ToInputArray, points3d: &mut dyn core::ToOutputArray) -> Result<()> {
extern_container_arg!(points2d);
extern_container_arg!(projection_matrices);
extern_container_arg!(points3d);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_triangulatePoints_const__InputArrayR_const__InputArrayR_const__OutputArrayR(points2d.as_raw__InputArray(), projection_matrices.as_raw__InputArray(), points3d.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Constant methods for [crate::sfm::BaseSFM]
pub trait BaseSFMConst {
fn as_raw_BaseSFM(&self) -> *const c_void;
#[inline]
fn get_error(&self) -> Result<f64> {
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_BaseSFM_getError_const(self.as_raw_BaseSFM(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
#[inline]
fn get_intrinsics(&self) -> Result<core::Mat> {
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_BaseSFM_getIntrinsics_const(self.as_raw_BaseSFM(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { core::Mat::opencv_from_extern(ret) };
Ok(ret)
}
}
/// base class BaseSFM declares a common API that would be used in a typical scene reconstruction scenario
pub trait BaseSFM: crate::sfm::BaseSFMConst {
fn as_raw_mut_BaseSFM(&mut self) -> *mut c_void;
#[inline]
fn run(&mut self, points2d: &dyn core::ToInputArray) -> Result<()> {
extern_container_arg!(points2d);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_BaseSFM_run_const__InputArrayR(self.as_raw_mut_BaseSFM(), points2d.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
#[inline]
fn run_1(&mut self, points2d: &dyn core::ToInputArray, k: &mut dyn core::ToInputOutputArray, rs: &mut dyn core::ToOutputArray, ts: &mut dyn core::ToOutputArray, points3d: &mut dyn core::ToOutputArray) -> Result<()> {
extern_container_arg!(points2d);
extern_container_arg!(k);
extern_container_arg!(rs);
extern_container_arg!(ts);
extern_container_arg!(points3d);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_BaseSFM_run_const__InputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(self.as_raw_mut_BaseSFM(), points2d.as_raw__InputArray(), k.as_raw__InputOutputArray(), rs.as_raw__OutputArray(), ts.as_raw__OutputArray(), points3d.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
#[inline]
fn run_2(&mut self, images: &core::Vector<String>) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_BaseSFM_run_const_vectorLStringGR(self.as_raw_mut_BaseSFM(), images.as_raw_VectorOfString(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
#[inline]
fn run_3(&mut self, images: &core::Vector<String>, k: &mut dyn core::ToInputOutputArray, rs: &mut dyn core::ToOutputArray, ts: &mut dyn core::ToOutputArray, points3d: &mut dyn core::ToOutputArray) -> Result<()> {
extern_container_arg!(k);
extern_container_arg!(rs);
extern_container_arg!(ts);
extern_container_arg!(points3d);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_BaseSFM_run_const_vectorLStringGR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(self.as_raw_mut_BaseSFM(), images.as_raw_VectorOfString(), k.as_raw__InputOutputArray(), rs.as_raw__OutputArray(), ts.as_raw__OutputArray(), points3d.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
#[inline]
fn get_points(&mut self, points3d: &mut dyn core::ToOutputArray) -> Result<()> {
extern_container_arg!(points3d);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_BaseSFM_getPoints_const__OutputArrayR(self.as_raw_mut_BaseSFM(), points3d.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
#[inline]
fn get_cameras(&mut self, rs: &mut dyn core::ToOutputArray, ts: &mut dyn core::ToOutputArray) -> Result<()> {
extern_container_arg!(rs);
extern_container_arg!(ts);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_BaseSFM_getCameras_const__OutputArrayR_const__OutputArrayR(self.as_raw_mut_BaseSFM(), rs.as_raw__OutputArray(), ts.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
#[inline]
fn set_reconstruction_options(&mut self, libmv_reconstruction_options: crate::sfm::libmv_ReconstructionOptions) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_BaseSFM_setReconstructionOptions_const_libmv_ReconstructionOptionsR(self.as_raw_mut_BaseSFM(), &libmv_reconstruction_options, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
#[inline]
fn set_camera_intrinsic_options(&mut self, libmv_camera_intrinsics_options: crate::sfm::libmv_CameraIntrinsicsOptions) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_BaseSFM_setCameraIntrinsicOptions_const_libmv_CameraIntrinsicsOptionsR(self.as_raw_mut_BaseSFM(), &libmv_camera_intrinsics_options, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
}
/// Constant methods for [crate::sfm::SFMLibmvEuclideanReconstruction]
pub trait SFMLibmvEuclideanReconstructionConst: crate::sfm::BaseSFMConst {
fn as_raw_SFMLibmvEuclideanReconstruction(&self) -> *const c_void;
/// Returns the computed reprojection error.
#[inline]
fn get_error(&self) -> Result<f64> {
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_SFMLibmvEuclideanReconstruction_getError_const(self.as_raw_SFMLibmvEuclideanReconstruction(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Returns the refined camera calibration matrix.
#[inline]
fn get_intrinsics(&self) -> Result<core::Mat> {
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_SFMLibmvEuclideanReconstruction_getIntrinsics_const(self.as_raw_SFMLibmvEuclideanReconstruction(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { core::Mat::opencv_from_extern(ret) };
Ok(ret)
}
}
/// SFMLibmvEuclideanReconstruction class provides an interface with the Libmv Structure From Motion pipeline.
pub trait SFMLibmvEuclideanReconstruction: crate::sfm::BaseSFM + crate::sfm::SFMLibmvEuclideanReconstructionConst {
fn as_raw_mut_SFMLibmvEuclideanReconstruction(&mut self) -> *mut c_void;
/// Calls the pipeline in order to perform Eclidean reconstruction.
/// ## Parameters
/// * points2d: Input vector of vectors of 2d points (the inner vector is per image).
///
///
/// Note:
/// - Tracks must be as precise as possible. It does not handle outliers and is very sensible to them.
#[inline]
fn run(&mut self, points2d: &dyn core::ToInputArray) -> Result<()> {
extern_container_arg!(points2d);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_SFMLibmvEuclideanReconstruction_run_const__InputArrayR(self.as_raw_mut_SFMLibmvEuclideanReconstruction(), points2d.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Calls the pipeline in order to perform Eclidean reconstruction.
/// ## Parameters
/// * points2d: Input vector of vectors of 2d points (the inner vector is per image).
/// * K: Input/Output camera matrix ![inline formula](https://latex.codecogs.com/png.latex?K%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D). Input parameters used as initial guess.
/// * Rs: Output vector of 3x3 rotations of the camera.
/// * Ts: Output vector of 3x1 translations of the camera.
/// * points3d: Output array with estimated 3d points.
///
///
/// Note:
/// - Tracks must be as precise as possible. It does not handle outliers and is very sensible to them.
#[inline]
fn run_1(&mut self, points2d: &dyn core::ToInputArray, k: &mut dyn core::ToInputOutputArray, rs: &mut dyn core::ToOutputArray, ts: &mut dyn core::ToOutputArray, points3d: &mut dyn core::ToOutputArray) -> Result<()> {
extern_container_arg!(points2d);
extern_container_arg!(k);
extern_container_arg!(rs);
extern_container_arg!(ts);
extern_container_arg!(points3d);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_SFMLibmvEuclideanReconstruction_run_const__InputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(self.as_raw_mut_SFMLibmvEuclideanReconstruction(), points2d.as_raw__InputArray(), k.as_raw__InputOutputArray(), rs.as_raw__OutputArray(), ts.as_raw__OutputArray(), points3d.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Calls the pipeline in order to perform Eclidean reconstruction.
/// ## Parameters
/// * images: a vector of string with the images paths.
///
///
/// Note:
/// - The images must be ordered as they were an image sequence. Additionally, each frame should be as close as posible to the previous and posterior.
/// - For now DAISY features are used in order to compute the 2d points tracks and it only works for 3-4 images.
#[inline]
fn run_2(&mut self, images: &core::Vector<String>) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_SFMLibmvEuclideanReconstruction_run_const_vectorLStringGR(self.as_raw_mut_SFMLibmvEuclideanReconstruction(), images.as_raw_VectorOfString(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Calls the pipeline in order to perform Eclidean reconstruction.
/// ## Parameters
/// * images: a vector of string with the images paths.
/// * K: Input/Output camera matrix ![inline formula](https://latex.codecogs.com/png.latex?K%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D). Input parameters used as initial guess.
/// * Rs: Output vector of 3x3 rotations of the camera.
/// * Ts: Output vector of 3x1 translations of the camera.
/// * points3d: Output array with estimated 3d points.
///
///
/// Note:
/// - The images must be ordered as they were an image sequence. Additionally, each frame should be as close as posible to the previous and posterior.
/// - For now DAISY features are used in order to compute the 2d points tracks and it only works for 3-4 images.
#[inline]
fn run_3(&mut self, images: &core::Vector<String>, k: &mut dyn core::ToInputOutputArray, rs: &mut dyn core::ToOutputArray, ts: &mut dyn core::ToOutputArray, points3d: &mut dyn core::ToOutputArray) -> Result<()> {
extern_container_arg!(k);
extern_container_arg!(rs);
extern_container_arg!(ts);
extern_container_arg!(points3d);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_SFMLibmvEuclideanReconstruction_run_const_vectorLStringGR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(self.as_raw_mut_SFMLibmvEuclideanReconstruction(), images.as_raw_VectorOfString(), k.as_raw__InputOutputArray(), rs.as_raw__OutputArray(), ts.as_raw__OutputArray(), points3d.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Returns the estimated 3d points.
/// ## Parameters
/// * points3d: Output array with estimated 3d points.
#[inline]
fn get_points(&mut self, points3d: &mut dyn core::ToOutputArray) -> Result<()> {
extern_container_arg!(points3d);
return_send!(via ocvrs_return);
unsafe { sys::cv_sfm_SFMLibmvEuclideanReconstruction_getPoints_const__OutputArrayR(self.as_raw_mut_SFMLibmvEuclideanReconstruction(), points3d.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)