- RAFT Reference Documentation: API Documentation.
- RAFT Getting Started: Getting started with RAFT.
- Build and Install RAFT: Instructions for installing and building RAFT.
- RAPIDS Community: Get help, contribute, and collaborate.
- GitHub repository: Download the RAFT source code.
- Issue tracker: Report issues or request features.
RAFT contains fundamental widely-used algorithms and primitives for data science and machine learning. The algorithms are CUDA-accelerated and form building-blocks for rapidly composing analytics.
By taking a primitives-based approach to algorithm development, RAFT
- accelerates algorithm construction time
- reduces the maintenance burden by maximizing reuse across projects, and
- centralizes core reusable computations, allowing future optimizations to benefit all algorithms that use them.
While not exhaustive, the following general categories help summarize the accelerated functions in RAFT:
Category | Examples |
---|---|
Data Formats | sparse & dense, conversions, data generation |
Dense Operations | linear algebra, matrix and vector operations, slicing, norms, factorization, least squares, svd & eigenvalue problems |
Sparse Operations | linear algebra, eigenvalue problems, slicing, symmetrization, components & labeling |
Spatial | pairwise distances, nearest neighbors, neighborhood graph construction |
Basic Clustering | spectral clustering, hierarchical clustering, k-means |
Solvers | combinatorial optimization, iterative solvers |
Statistics | sampling, moments and summary statistics, metrics |
Tools & Utilities | common utilities for developing CUDA applications, multi-node multi-gpu infrastructure |
All of RAFT's C++ APIs can be accessed header-only and optional pre-compiled shared libraries can 1) speed up compile times and 2) enable the APIs to be used without CUDA-enabled compilers.
In addition to the C++ library, RAFT also provides 2 Python libraries:
pylibraft
- lightweight low-level Python wrappers around RAFT's host-accessible APIs.raft-dask
- multi-node multi-GPU communicator infrastructure for building distributed algorithms on the GPU with Dask.
RAFT relies heavily on RMM which eases the burden of configuring different allocation strategies globally across the libraries that use it.
The APIs in RAFT currently accept raw pointers to device memory and we are in the process of simplifying the APIs with the mdspan multi-dimensional array view for representing data in higher dimensions similar to the ndarray
in the Numpy Python library. RAFT also contains the corresponding owning mdarray
structure, which simplifies the allocation and management of multi-dimensional data in both host and device (GPU) memory.
The mdarray
forms a convenience layer over RMM and can be constructed in RAFT using a number of different helper functions:
#include <raft/core/device_mdarray.hpp>
int n_rows = 10;
int n_cols = 10;
auto scalar = raft::make_device_scalar<float>(handle, 1.0);
auto vector = raft::make_device_vector<float>(handle, n_cols);
auto matrix = raft::make_device_matrix<float>(handle, n_rows, n_cols);
Most of the primitives in RAFT accept a raft::handle_t
object for the management of resources which are expensive to create, such CUDA streams, stream pools, and handles to other CUDA libraries like cublas
and cusolver
.
The example below demonstrates creating a RAFT handle and using it with device_matrix
and device_vector
to allocate memory, generating random clusters, and computing
pairwise Euclidean distances:
#include <raft/core/handle.hpp>
#include <raft/core/device_mdarray.hpp>
#include <raft/random/make_blobs.cuh>
#include <raft/distance/distance.cuh>
raft::handle_t handle;
int n_samples = 5000;
int n_features = 50;
auto input = raft::make_device_matrix<float>(handle, n_samples, n_features);
auto labels = raft::make_device_vector<int>(handle, n_samples);
auto output = raft::make_device_matrix<float>(handle, n_samples, n_samples);
raft::random::make_blobs(handle, input.view(), labels.view());
auto metric = raft::distance::DistanceType::L2SqrtExpanded;
raft::distance::pairwise_distance(handle, input.view(), input.view(), output.view(), metric);
It's also possible to create raft::device_mdspan
views to invoke the same API with raw pointers and shape information:
#include <raft/core/handle.hpp>
#include <raft/core/device_mdspan.hpp>
#include <raft/random/make_blobs.cuh>
#include <raft/distance/distance.cuh>
raft::handle_t handle;
int n_samples = 5000;
int n_features = 50;
float *input;
int *labels;
float *output;
...
// Allocate input, labels, and output pointers
...
auto input_view = raft::make_device_matrix_view(input, n_samples, n_features);
auto labels_view = raft::make_device_vector_view(labels, n_samples);
auto output_view = raft::make_device_matrix_view(output, n_samples, n_samples);
raft::random::make_blobs(handle, input_view, labels_view);
auto metric = raft::distance::DistanceType::L2SqrtExpanded;
raft::distance::pairwise_distance(handle, input_view, input_view, output_view, metric);
The pylibraft
package contains a Python API for RAFT algorithms and primitives. pylibraft
integrates nicely into other libraries by being very lightweight with minimal dependencies and accepting any object that supports the __cuda_array_interface__
, such as CuPy's ndarray. The number of RAFT algorithms exposed in this package is continuing to grow from release to release.
The example below demonstrates computing the pairwise Euclidean distances between CuPy arrays. Note that CuPy is not a required dependency for pylibraft
.
import cupy as cp
from pylibraft.distance import pairwise_distance
n_samples = 5000
n_features = 50
in1 = cp.random.random_sample((n_samples, n_features), dtype=cp.float32)
in2 = cp.random.random_sample((n_samples, n_features), dtype=cp.float32)
output = pairwise_distance(in1, in2, metric="euclidean")
The output
array supports cuda_array_interface so it is interoperable with other libraries like CuPy, Numba, and PyTorch that also support it.
Below is an example of converting the output pylibraft.device_ndarray
to a CuPy array:
cupy_array = cp.asarray(output)
And converting to a PyTorch tensor:
import torch
torch_tensor = torch.as_tensor(output, device='cuda')
pylibraft
also supports writing to a pre-allocated output array so any __cuda_array_interface__
supported array can be written to in-place:
import cupy as cp
from pylibraft.distance import pairwise_distance
n_samples = 5000
n_features = 50
in1 = cp.random.random_sample((n_samples, n_features), dtype=cp.float32)
in2 = cp.random.random_sample((n_samples, n_features), dtype=cp.float32)
output = cp.empty((n_samples, n_samples), dtype=cp.float32)
pairwise_distance(in1, in2, out=output, metric="euclidean")
RAFT itself can be installed through conda, Cmake Package Manager (CPM), pip, or by building the repository from source. Please refer to the build instructions for more a comprehensive guide on installing and building RAFT and using it in downstream projects.
The easiest way to install RAFT is through conda and several packages are provided.
libraft-headers
RAFT headerslibraft-nn
(optional) contains shared libraries for the nearest neighbors primitives.libraft-distance
(optional) contains shared libraries for distance primitives.pylibraft
(optional) Python wrappers around RAFT algorithms and primitives.raft-dask
(optional) enables deployment of multi-node multi-GPU algorithms that use RAFTraft::comms
in Dask clusters.
Use the following command to install all of the RAFT packages with conda (replace rapidsai
with rapidsai-nightly
to install more up-to-date but less stable nightly packages). mamba
is preferred over the conda
command.
mamba install -c rapidsai -c conda-forge -c nvidia raft-dask pylibraft
You can also install the libraft-*
conda packages individually using the mamba
command above.
After installing RAFT, find_package(raft COMPONENTS nn distance)
can be used in your CUDA/C++ cmake build to compile and/or link against needed dependencies in your raft target. COMPONENTS
are optional and will depend on the packages installed.
pylibraft and raft-dask both have experimental packages that can be installed through pip:
pip install pylibraft-cu11 --extra-index-url=https://pypi.ngc.nvidia.com
pip install raft-dask-cu11 --extra-index-url=https://pypi.ngc.nvidia.com
RAFT uses the RAPIDS-CMake library, which makes it simple to include in downstream cmake projects. RAPIDS CMake provides a convenience layer around CPM.
After installing rapids-cmake in your project, you can begin using RAFT by placing the code snippet below in a file named get_raft.cmake
and including it in your cmake build with include(get_raft.cmake)
. This will make available several targets to add to configure the link libraries for your artifacts.
set(RAFT_VERSION "22.12")
set(RAFT_FORK "rapidsai")
set(RAFT_PINNED_TAG "branch-${RAFT_VERSION}")
function(find_and_configure_raft)
set(oneValueArgs VERSION FORK PINNED_TAG COMPILE_LIBRARIES)
cmake_parse_arguments(PKG "${options}" "${oneValueArgs}"
"${multiValueArgs}" ${ARGN} )
#-----------------------------------------------------
# Invoke CPM find_package()
#-----------------------------------------------------
rapids_cpm_find(raft ${PKG_VERSION}
GLOBAL_TARGETS raft::raft
BUILD_EXPORT_SET projname-exports
INSTALL_EXPORT_SET projname-exports
CPM_ARGS
GIT_REPOSITORY https://github.com/${PKG_FORK}/raft.git
GIT_TAG ${PKG_PINNED_TAG}
SOURCE_SUBDIR cpp
OPTIONS
"BUILD_TESTS OFF"
"BUILD_BENCH OFF"
"RAFT_COMPILE_LIBRARIES ${PKG_COMPILE_LIBRARIES}"
)
endfunction()
# Change pinned tag here to test a commit in CI
# To use a different RAFT locally, set the CMake variable
# CPM_raft_SOURCE=/path/to/local/raft
find_and_configure_raft(VERSION ${RAFT_VERSION}.00
FORK ${RAFT_FORK}
PINNED_TAG ${RAFT_PINNED_TAG}
COMPILE_LIBRARIES NO
)
Several CMake targets can be made available by adding components in the table below to the RAFT_COMPONENTS
list above, separated by spaces. The raft::raft
target will always be available. RAFT headers require, at a minimum, the CUDA toolkit libraries and RMM dependencies.
Component | Target | Description | Base Dependencies |
---|---|---|---|
n/a | raft::raft |
Full RAFT header library | CUDA toolkit library, RMM, Thrust (optional), NVTools (optional) |
distance | raft::distance |
Pre-compiled template specializations for raft::distance | raft::raft, cuCollections (optional) |
nn | raft::nn |
Pre-compiled template specializations for raft::spatial::knn | raft::raft, FAISS (optional) |
The easiest way to build RAFT from source is to use the build.sh
script at the root of the repository:
- Create an environment with the needed dependencies:
mamba env create --name raft_dev_env -f conda/environments/all_cuda-115_arch-x86_64.yaml
mamba activate raft_dev_env
./build.sh raft-dask pylibraft libraft tests bench --compile-libs
The build instructions contain more details on building RAFT from source and including it in downstream projects. You can also find a more comprehensive version of the above CPM code snippet the Building RAFT C++ from source section of the build instructions.
The folder structure mirrors other RAPIDS repos, with the following folders:
ci
: Scripts for running CI in PRsconda
: Conda recipes and development conda environmentscpp
: Source code for C++ libraries.bench
: Benchmarks source codecmake
: Cmake modules and templatesdoxygen
: Doxygen configurationinclude
: The C++ API headers are fully-contained here (deprecated directories are excluded from the listing below)cluster
: Basic clustering primitives and algorithms.comms
: A multi-node multi-GPU communications abstraction layer for NCCL+UCX and MPI+NCCL, which can be deployed in Dask clusters using theraft-dask
Python package.core
: Core API headers which require minimal dependencies aside from RMM and Cudatoolkit. These are safe to expose on public APIs and do not requirenvcc
to build. This is the same for any headers in RAFT which have the suffix*_types.hpp
.distance
: Distance primitiveslinalg
: Dense linear algebramatrix
: Dense matrix operationsneighbors
: Nearest neighbors and knn graph constructionrandom
: Random number generation, sampling, and data generation primitivessolver
: Iterative and combinatorial solvers for optimization and approximationsparse
: Sparse matrix operationsconvert
: Sparse conversion functionsdistance
: Sparse distance computationslinalg
: Sparse linear algebraneighbors
: Sparse nearest neighbors and knn graph constructionop
: Various sparse operations such as slicing and filtering (Note: this will soon be renamed tosparse/matrix
)solver
: Sparse solvers for optimization and approximation
stats
: Moments, summary statistics, model performance measuresutil
: Various reusable tools and utilities for accelerated algorithm development
scripts
: Helpful scripts for developmentsrc
: Compiled APIs and template specializations for the shared librariestest
: Googletests source code
docs
: Source code and scripts for building library documentation (Uses breath, doxygen, & pydocs)python
: Source code for Python libraries.pylibraft
: Python build and source code for pylibraft libraryraft-dask
: Python build and source code for raft-dask library
thirdparty
: Third-party licenses
If you are interested in contributing to the RAFT project, please read our Contributing guidelines. Refer to the Developer Guide for details on the developer guidelines, workflows, and principals.
When citing RAFT generally, please consider referencing this Github project.
@misc{rapidsai,
title={Rapidsai/raft: RAFT contains fundamental widely-used algorithms and primitives for data science, Graph and machine learning.},
url={https://github.com/rapidsai/raft},
journal={GitHub},
publisher={Nvidia RAPIDS},
author={Rapidsai},
year={2022}
}
If citing the sparse pairwise distances API, please consider using the following bibtex:
@article{nolet2021semiring,
title={Semiring primitives for sparse neighborhood methods on the gpu},
author={Nolet, Corey J and Gala, Divye and Raff, Edward and Eaton, Joe and Rees, Brad and Zedlewski, John and Oates, Tim},
journal={arXiv preprint arXiv:2104.06357},
year={2021}
}