forked from lamdongnd/Entity.Extraction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSharpEntropyDoc.xml
1936 lines (1930 loc) · 80.4 KB
/
SharpEntropyDoc.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version="1.0"?>
<doc>
<assembly>
<name>SharpEntropy</name>
</assembly>
<members>
<member name="T:SharpEntropy.AbstractDataIndexer">
<summary>
Abstract base for DataIndexer implementations.
</summary>
<author>
Tom Morton
</author>
<author>
Richard J. Northedge
</author>
</member>
<member name="T:SharpEntropy.ITrainingDataIndexer">
<summary>
Object that compresses events in memory and performs feature selection.
</summary>
</member>
<member name="M:SharpEntropy.ITrainingDataIndexer.GetContexts">
<summary>
Gets an array of context data calculated from the training data.
</summary>
<returns>
Array of integer arrays, each containing the context data for an event.
</returns>
</member>
<member name="M:SharpEntropy.ITrainingDataIndexer.GetNumTimesEventsSeen">
<summary>
Gets an array indicating how many times each event is seen.
</summary>
<returns>
Integer array with event frequencies.
</returns>
</member>
<member name="M:SharpEntropy.ITrainingDataIndexer.GetOutcomeList">
<summary>
Gets an outcome list.
</summary>
<returns>
Integer array of outcomes.
</returns>
</member>
<member name="M:SharpEntropy.ITrainingDataIndexer.GetPredicateLabels">
<summary>
Gets an array of predicate labels.
</summary>
<returns>
Array of predicate labels.
</returns>
</member>
<member name="M:SharpEntropy.ITrainingDataIndexer.GetOutcomeLabels">
<summary>
Gets an array of outcome labels.
</summary>
<returns>
Array of outcome labels.
</returns>
</member>
<member name="M:SharpEntropy.AbstractDataIndexer.GetContexts">
<summary>
Gets an array of context data calculated from the training data.
</summary>
<returns>
Array of integer arrays, each containing the context data for an event.
</returns>
</member>
<member name="M:SharpEntropy.AbstractDataIndexer.SetContexts(System.Int32[][])">
<summary>
Sets the array of context data calculated from the training data.
</summary>
<param name="newContexts">
Array of integer arrays, each containing the context data for an event.
</param>
</member>
<member name="M:SharpEntropy.AbstractDataIndexer.GetNumTimesEventsSeen">
<summary>
Gets an array indicating how many times each event is seen.
</summary>
<returns>
Integer array with event frequencies.
</returns>
</member>
<member name="M:SharpEntropy.AbstractDataIndexer.SetNumTimesEventsSeen(System.Int32[])">
<summary>
Sets an array indicating how many times each event is seen.
</summary>
<param name="newNumTimesEventsSeen">
Integer array with event frequencies.
</param>
</member>
<member name="M:SharpEntropy.AbstractDataIndexer.GetOutcomeList">
<summary>
Gets an outcome list.
</summary>
<returns>
Integer array of outcomes.
</returns>
</member>
<member name="M:SharpEntropy.AbstractDataIndexer.SetOutcomeList(System.Int32[])">
<summary>
Sets an outcome list.
</summary>
<param name="newOutcomeList">
Integer array of outcomes.
</param>
</member>
<member name="M:SharpEntropy.AbstractDataIndexer.GetPredicateLabels">
<summary>
Gets an array of predicate labels.
</summary>
<returns>
Array of predicate labels.
</returns>
</member>
<member name="M:SharpEntropy.AbstractDataIndexer.SetPredicateLabels(System.String[])">
<summary>
Sets an array of predicate labels.
</summary>
<param name="newPredicateLabels">
Array of predicate labels.
</param>
</member>
<member name="M:SharpEntropy.AbstractDataIndexer.GetOutcomeLabels">
<summary>
Gets an array of outcome labels.
</summary>
<returns>
Array of outcome labels.
</returns>
</member>
<member name="M:SharpEntropy.AbstractDataIndexer.SetOutcomeLabels(System.String[])">
<summary>
Sets an array of outcome labels.
</summary>
<param name="newOutcomeLabels">
Array of outcome labels.
</param>
</member>
<member name="M:SharpEntropy.AbstractDataIndexer.SortAndMerge(System.Collections.Generic.List{SharpEntropy.ComparableEvent})">
<summary>
Sorts and uniques the array of comparable events. This method
will alter the eventsToCompare array -- it does an in place
sort, followed by an in place edit to remove duplicates.
</summary>
<param name="eventsToCompare">
a List of <code>ComparableEvent</code> values
</param>
</member>
<member name="M:SharpEntropy.AbstractDataIndexer.ToIndexedStringArray(System.Collections.Generic.Dictionary{System.String,System.Int32})">
<summary>
Utility method for creating a string[] array from a dictionary whose
keys are labels (strings) to be stored in the array and whose
values are the indices (integers) at which the corresponding
labels should be inserted.
</summary>
<param name="labelToIndexMap">
a <code>Dictionary</code> value
</param>
<returns>
a <code>string[]</code> value
</returns>
</member>
<member name="T:SharpEntropy.BasicContextGenerator">
<summary>
Generate contexts for maxent decisions, assuming that the input
given to the GetContext() method is a String containing contextual
predicates separated by spaces, e.g:
<p>
cp_1 cp_2 ... cp_n
</p>
</summary>
<author>
Jason Baldridge
</author>
<author>
Richard J. Northedge
</author>
<version>based on BasicContextGenerator.java, $Revision: 1.2 $, $Date: 2002/04/30 08:48:35 $
</version>
</member>
<member name="T:SharpEntropy.IContextGenerator`1">
<summary>
Generate contexts for maximum entropy decisions.
</summary>
</member>
<member name="M:SharpEntropy.IContextGenerator`1.GetContext(`0)">
<summary>
Builds up the list of contextual predicates given an object of type T.
</summary>
</member>
<member name="M:SharpEntropy.BasicContextGenerator.GetContext(System.String)">
<summary>
Builds up the list of contextual predicates given a string.
</summary>
<param name="input">
String with contextual predicates separated by spaces.
</param>
<returns>String array of contextual predicates.</returns>
</member>
<member name="T:SharpEntropy.BasicEventReader">
<summary>
An object which can deliver a stream of training events assuming
that each event is represented as a space separated list containing
all the contextual predicates, with the last item being the
outcome, e.g.:
<p> cp_1 cp_2 ... cp_n outcome</p>
</summary>
</member>
<member name="T:SharpEntropy.ITrainingEventReader">
<summary>
An object which can deliver a stream of training events for the GIS
procedure (or others such as IIS if and when they are implemented).
TrainingEventReaders don't need to use SharpEntropy.ITrainingDataReader, but doing so
would provide greater flexibility for producing events from data stored in
different formats.
</summary>
</member>
<member name="M:SharpEntropy.ITrainingEventReader.ReadNextEvent">
<summary>
Returns the next TrainingEvent object held in this TrainingEventReader.
</summary>
<returns>
the TrainingEvent object which is next in this TrainingEventReader
</returns>
</member>
<member name="M:SharpEntropy.ITrainingEventReader.HasNext">
<summary>
Test whether there are any TrainingEvents remaining in this TrainingEventReader.
</summary>
<returns>
true if this TrainingEventReader has more TrainingEvents
</returns>
</member>
<member name="M:SharpEntropy.BasicEventReader.#ctor(SharpEntropy.ITrainingDataReader{System.String})">
<summary>
Constructor sets up the training event reader based on a stream of training data.
</summary>
<param name="dataReader">
Stream of training data.
</param>
</member>
<member name="M:SharpEntropy.BasicEventReader.ReadNextEvent">
<summary>
Returns the next Event object held in this EventReader. Each call to ReadNextEvent advances the EventReader.
</summary>
<returns>
the Event object which is next in this EventReader
</returns>
</member>
<member name="M:SharpEntropy.BasicEventReader.HasNext">
<summary>
Test whether there are any Events remaining in this EventReader.
</summary>
<returns>
true if this EventReader has more Events
</returns>
</member>
<member name="T:SharpEntropy.ComparableEvent">
<summary>
A Maximum Entropy event representation which we can use to sort based on the
predicates indexes contained in the events.
</summary>
<author>
Jason Baldridge
</author>
<author>
Richard J. Northedge
</author>
<version>
based on ComparableEvent.java, $Revision: 1.2 $, $Date: 2001/12/27 19:20:26 $
</version>
</member>
<member name="M:SharpEntropy.ComparableEvent.GetPredicateIndexes">
<summary>
Returns an array containing the indexes of the predicates in this event.
</summary>
<returns>
Integer array of predicate indexes.
</returns>
</member>
<member name="M:SharpEntropy.ComparableEvent.SetPredicateIndexes(System.Int32[])">
<summary>
Sets the array containing the indices of the predicates in this event.
</summary>
<param name="predicateIndexes">
Integer array of predicate indexes.
</param>
</member>
<member name="M:SharpEntropy.ComparableEvent.#ctor(System.Int32,System.Int32[])">
<summary>
Constructor for the ComparableEvent.
</summary>
<param name="outcome">
The ID of the outcome for this event.
</param>
<param name="predicateIndexes">
Array of indexes for the predicates in this event.
</param>
</member>
<member name="M:SharpEntropy.ComparableEvent.CompareTo(SharpEntropy.ComparableEvent)">
<summary>
Implementation of the IComparable interface.
</summary>
<param name="eventToCompare">
ComparableEvent to compare this event to.
</param>
<returns>
A value indicating if the compared object is smaller, greater or the same as this event.
</returns>
</member>
<member name="M:SharpEntropy.ComparableEvent.Equals(System.Object)">
<summary>
Tests if this event is equal to another object.
</summary>
<param name="o">
Object to test against.
</param>
<returns>
True if the objects are equal.
</returns>
</member>
<member name="M:SharpEntropy.ComparableEvent.GetHashCode">
<summary>
Provides a hashcode for storing events in a dictionary or hashtable.
</summary>
<returns>
A hashcode value.
</returns>
</member>
<member name="M:SharpEntropy.ComparableEvent.ToString">
<summary>
Override to provide a succint summary of the ComparableEvent object.
</summary>
<returns>
String representation of the ComparableEvent object.
</returns>
</member>
<member name="P:SharpEntropy.ComparableEvent.Outcome">
<summary>
The outcome ID of this event.
</summary>
</member>
<member name="P:SharpEntropy.ComparableEvent.SeenCount">
<summary>
The number of times this event
has been seen.
</summary>
</member>
<member name="T:SharpEntropy.GisModel">
<summary>
A maximum entropy model which has been trained using the Generalized
Iterative Scaling procedure.
</summary>
<author>
Tom Morton and Jason Baldridge
</author>
<author>
Richard J. Northedge
</author>
<version>
based on GISModel.java, $Revision: 1.13 $, $Date: 2004/06/11 20:51:44 $
</version>
</member>
<member name="T:SharpEntropy.IMaximumEntropyModel">
<summary>
Interface for maximum entropy models.
</summary>
<author>
Jason Baldridge
</author>
<author>
Richard J. Northedge
</author>
<version>
based on MaxentModel.java, $Revision: 1.4 $, $Date: 2003/12/09 23:13:53 $
</version>
</member>
<member name="M:SharpEntropy.IMaximumEntropyModel.Evaluate(System.String[])">
<summary>
Evaluates a context.
</summary>
<param name="context">
A list of string names of the contextual predicates
which are to be evaluated together.
</param>
<returns>
An array of the probabilities for each of the different
outcomes, all of which sum to 1.
</returns>
</member>
<member name="M:SharpEntropy.IMaximumEntropyModel.Evaluate(System.String[],System.Double[])">
<summary>
Evaluates a context.
</summary>
<param name="context">
A list of string names of the contextual predicates
which are to be evaluated together.
</param>
<param name="probabilities">
An array which is populated with the probabilities for each of the different
outcomes, all of which sum to 1.
</param>
<returns>
an array of the probabilities for each of the different
outcomes, all of which sum to 1. The <code>probabilities</code> array is returned if it is appropiately sized.
</returns>
</member>
<member name="M:SharpEntropy.IMaximumEntropyModel.GetBestOutcome(System.Double[])">
<summary>
Simple function to return the outcome associated with the index
containing the highest probability in the double[].
</summary>
<param name="outcomes">
A <code>double[]</code> as returned by the
<code>Evaluate(string[] context)</code>
method.
</param>
<returns>
the string name of the best outcome
</returns>
</member>
<member name="M:SharpEntropy.IMaximumEntropyModel.GetAllOutcomes(System.Double[])">
<summary>
Return a string matching all the outcome names with all the
probabilities produced by the <code>eval(String[]
context)</code> method.
</summary>
<param name="outcomes">
A <code>double[]</code> as returned by the
<code>eval(String[] context)</code>
method.
</param>
<returns>
String containing outcome names paired with the normalized
probability (contained in the <code>double[] ocs</code>)
for each one.
</returns>
</member>
<member name="M:SharpEntropy.IMaximumEntropyModel.GetOutcomeName(System.Int32)">
<summary>
Gets the String name of the outcome associated with the supplied index
</summary>
<param name="index">
the index for which the name of the associated outcome is desired.
</param>
<returns>
the String name of the outcome
</returns>
</member>
<member name="M:SharpEntropy.IMaximumEntropyModel.GetOutcomeIndex(System.String)">
<summary>
Gets the index associated with the string name of the given
outcome.
</summary>
<param name="outcome">
the String name of the outcome for which the
index is desired
</param>
<returns>
the index if the given outcome label exists for this
model, -1 if it does not.
</returns>
</member>
<member name="P:SharpEntropy.IMaximumEntropyModel.OutcomeCount">
<summary>
Returns the number of outcomes for this model.
</summary>
<returns>
The number of outcomes.
</returns>
</member>
<member name="M:SharpEntropy.GisModel.#ctor(SharpEntropy.IO.IGisModelReader)">
<summary>
Constructor for a maximum entropy model trained using the
Generalized Iterative Scaling procedure.
</summary>
<param name="reader">
A reader providing the data for the model.
</param>
</member>
<member name="M:SharpEntropy.GisModel.Evaluate(System.String[])">
<summary>
Evaluates a context.
</summary>
<param name="context">
A list of string names of the contextual predicates
which are to be evaluated together.
</param>
<returns>
An array of the probabilities for each of the different
outcomes, all of which sum to 1.
</returns>
</member>
<member name="M:SharpEntropy.GisModel.Evaluate(System.String[],System.Double[])">
<summary>
Use this model to evaluate a context and return an array of the
likelihood of each outcome given that context.
</summary>
<param name="context">
The names of the predicates which have been observed at
the present decision point.
</param>
<param name="outcomeSums">
This is where the distribution is stored.
</param>
<returns>
The normalized probabilities for the outcomes given the
context. The indexes of the double[] are the outcome
ids, and the actual string representation of the
outcomes can be obtained from the method
GetOutcome(int outcomeIndex).
</returns>
</member>
<member name="M:SharpEntropy.GisModel.GetBestOutcome(System.Double[])">
<summary>
Return the name of the outcome corresponding to the highest likelihood
in the parameter outcomes.
</summary>
<param name="outcomes">
A double[] as returned by the Evaluate(string[] context)
method.
</param>
<returns>
The name of the most likely outcome.
</returns>
</member>
<member name="M:SharpEntropy.GisModel.GetAllOutcomes(System.Double[])">
<summary>
Return a string matching all the outcome names with all the
probabilities produced by the <code>Evaluate(string[] context)</code>
method.
</summary>
<param name="outcomes">
A <code>double[]</code> as returned by the
<code>eval(String[] context)</code>
method.
</param>
<returns>
String containing outcome names paired with the normalized
probability (contained in the <code>double[] outcomes</code>)
for each one.
</returns>
</member>
<member name="M:SharpEntropy.GisModel.GetOutcomeName(System.Int32)">
<summary>
Return the name of an outcome corresponding to an integer ID value.
</summary>
<param name="outcomeIndex">
An outcome ID.
</param>
<returns>
The name of the outcome associated with that ID.
</returns>
</member>
<member name="M:SharpEntropy.GisModel.GetOutcomeIndex(System.String)">
<summary>
Gets the index associated with the string name of the given outcome.
</summary>
<param name="outcome">
the string name of the outcome for which the
index is desired
</param>
<returns>
the index if the given outcome label exists for this
model, -1 if it does not.
</returns>
</member>
<member name="M:SharpEntropy.GisModel.GetPredicates">
<summary>
Provides the predicates data structure which is part of the encoding of the maxent model
information. This method will usually only be needed by
GisModelWriters.
</summary>
<returns>
Dictionary containing PatternedPredicate objects.
</returns>
</member>
<member name="M:SharpEntropy.GisModel.GetOutcomePatterns">
<summary>
Provides the list of outcome patterns used by the predicates. This method will usually
only be needed by GisModelWriters.
</summary>
<returns>
Array of outcome patterns.
</returns>
</member>
<member name="M:SharpEntropy.GisModel.GetOutcomeNames">
<summary>
Provides the outcome names data structure which is part of the encoding of the maxent model
information. This method will usually only be needed by
GisModelWriters.
</summary>
<returns>
Array containing the outcome names.
</returns>
</member>
<member name="P:SharpEntropy.GisModel.OutcomeCount">
<summary>
Returns the number of outcomes for this model.
</summary>
<returns>
The number of outcomes.
</returns>
</member>
<member name="P:SharpEntropy.GisModel.CorrectionConstant">
<summary>
Provides the model's correction constant. This property will usually only be needed by
GisModelWriters.
</summary>
</member>
<member name="P:SharpEntropy.GisModel.CorrectionParameter">
<summary>
Provides the model's correction parameter. This property will usually only be needed by
GisModelWriters.
</summary>
</member>
<member name="T:SharpEntropy.GisTrainer">
<summary>
An implementation of Generalized Iterative Scaling. The reference paper
for this implementation was Adwait Ratnaparkhi's tech report at the
University of Pennsylvania's Institute for Research in Cognitive Science,
and is available at <a href ="ftp://ftp.cis.upenn.edu/pub/ircs/tr/97-08.ps.Z"><code>ftp://ftp.cis.upenn.edu/pub/ircs/tr/97-08.ps.Z</code></a>.
</summary>
<author>
Jason Baldridge
</author>
<author>
Richard J, Northedge
</author>
<version>
based on GISTrainer.java, $Revision: 1.15 $, $Date: 2004/06/14 20:52:41 $
</version>
</member>
<member name="T:SharpEntropy.IO.IGisModelReader">
<summary>
Interface for readers of GIS models.
</summary>
</member>
<member name="M:SharpEntropy.IO.IGisModelReader.GetOutcomeLabels">
<summary>
Returns the model's outcome labels as a String array. This method should
usually only be accessed by GIS model writer classes via the GisModel class.
</summary>
</member>
<member name="M:SharpEntropy.IO.IGisModelReader.GetOutcomePatterns">
<summary>
Returns the model's outcome patterns. This method should
usually only be accessed by GIS model writer classes via the GisModel class.
</summary>
</member>
<member name="M:SharpEntropy.IO.IGisModelReader.GetPredicates">
<summary>
Returns the model's predicates. This method should
usually only be accessed by GIS model writer classes via the GisModel class.
</summary>
</member>
<member name="M:SharpEntropy.IO.IGisModelReader.GetPredicateData(System.String,System.Int32[],System.Double[])">
<summary>
Returns model information for a predicate, given the predicate label.
</summary>
<param name="predicateLabel">
The predicate label to fetch information for.
</param>
<param name="featureCounts">
Array to be passed in to the method; it should have a length equal to the number of outcomes
in the model. The method increments the count of each outcome that is active in the specified
predicate.
</param>
<param name="outcomeSums">
Array to be passed in to the method; it should have a length equal to the number of outcomes
in the model. The method adds the parameter values for each of the active outcomes in the
predicate.
</param>
</member>
<member name="P:SharpEntropy.IO.IGisModelReader.CorrectionConstant">
<summary>
Returns the value of the model's correction constant. This property should
usually only be accessed by GIS model writer classes via the GisModel class.
</summary>
</member>
<member name="P:SharpEntropy.IO.IGisModelReader.CorrectionParameter">
<summary>
Returns the value of the model's correction constant parameter. This property should
usually only be accessed by GIS model writer classes via the GisModel class.
</summary>
</member>
<member name="M:SharpEntropy.GisTrainer.OnTrainingProgress(SharpEntropy.TrainingProgressEventArgs)">
<summary>
Used to raise events providing messages with information
about training progress.
</summary>
<param name="e">
Contains the message with information about the progress of
the training algorithm.
</param>
</member>
<member name="M:SharpEntropy.GisTrainer.#ctor">
<summary>
Creates a new <code>GisTrainer</code> instance.
</summary>
</member>
<member name="M:SharpEntropy.GisTrainer.#ctor(System.Boolean)">
<summary>
Creates a new <code>GisTrainer</code> instance.
</summary>
<param name="useSlackParameter">
Sets whether this trainer will use slack parameters while training the model.
</param>
</member>
<member name="M:SharpEntropy.GisTrainer.#ctor(System.Double)">
<summary>
Creates a new <code>GisTrainer</code> instance.
</summary>
<param name="smoothingObservation">
If smoothing is in use, this value indicates the "number" of
times we want the trainer to imagine that it saw a feature that it
actually didn't see. Defaulted to 0.1.
</param>
</member>
<member name="M:SharpEntropy.GisTrainer.#ctor(System.Boolean,System.Double)">
<summary>
Creates a new <code>GisTrainer</code> instance.
</summary>
<param name="useSlackParameter">
Sets whether this trainer will use slack parameters while training the model.
</param>
<param name="smoothingObservation">
If smoothing is in use, this value indicates the "number" of
times we want the trainer to imagine that it saw a feature that it
actually didn't see. Defaulted to 0.1.
</param>
</member>
<member name="M:SharpEntropy.GisTrainer.TrainModel(SharpEntropy.ITrainingEventReader)">
<summary>
Train a model using the GIS algorithm.
</summary>
<param name="eventReader">
The ITrainingEventReader holding the data on which this model
will be trained.
</param>
</member>
<member name="M:SharpEntropy.GisTrainer.TrainModel(SharpEntropy.ITrainingEventReader,System.Int32,System.Int32)">
<summary>
Train a model using the GIS algorithm.
</summary>
<param name="eventReader">
The ITrainingEventReader holding the data on which this model
will be trained.
</param>
<param name="iterations">
The number of GIS iterations to perform.
</param>
<param name="cutoff">
The number of times a predicate must be seen in order
to be relevant for training.
</param>
</member>
<member name="M:SharpEntropy.GisTrainer.TrainModel(System.Int32,SharpEntropy.ITrainingDataIndexer)">
<summary>
Train a model using the GIS algorithm.
</summary>
<param name="iterations">
The number of GIS iterations to perform.
</param>
<param name="dataIndexer">
The data indexer used to compress events in memory.
</param>
</member>
<member name="M:SharpEntropy.GisTrainer.FindParameters(System.Int32)">
<summary>
Estimate and return the model parameters.
</summary>
<param name="iterations">
Number of iterations to run through.
</param>
</member>
<member name="M:SharpEntropy.GisTrainer.Evaluate(System.Int32[],System.Double[])">
<summary>
Use this model to evaluate a context and return an array of the
likelihood of each outcome given that context.
</summary>
<param name="context">
The integers of the predicates which have been
observed at the present decision point.
</param>
<param name="outcomeSums">
The normalized probabilities for the outcomes given the
context. The indexes of the double[] are the outcome
ids.
</param>
</member>
<member name="M:SharpEntropy.GisTrainer.NextIteration">
<summary>
Compute one iteration of GIS and retutn log-likelihood.
</summary>
<returns>The log-likelihood.</returns>
</member>
<member name="M:SharpEntropy.GisTrainer.ConvertPredicates">
<summary>
Convert the predicate data into the outcome pattern / patterned predicate format used by the GIS models.
</summary>
</member>
<member name="M:SharpEntropy.GisTrainer.GetOutcomeLabels">
<summary>
Obtains the outcome labels for the model produced as a result of training.
</summary>
<returns>
Array of outcome labels.
</returns>
</member>
<member name="M:SharpEntropy.GisTrainer.GetOutcomePatterns">
<summary>
Obtains the outcome patterns for the model produced as a result of training.
</summary>
<returns>
Array of outcome patterns.
</returns>
</member>
<member name="M:SharpEntropy.GisTrainer.GetPredicates">
<summary>
Obtains the predicate data for the model produced as a result of training.
</summary>
<returns>
Dictionary containing PatternedPredicate objects.
</returns>
</member>
<member name="M:SharpEntropy.GisTrainer.GetPredicateData(System.String,System.Int32[],System.Double[])">
<summary>
Returns trained model information for a predicate, given the predicate label.
</summary>
<param name="predicateLabel">
The predicate label to fetch information for.
</param>
<param name="featureCounts">
Array to be passed in to the method; it should have a length equal to the number of outcomes
in the model. The method increments the count of each outcome that is active in the specified
predicate.
</param>
<param name="outcomeSums">
Array to be passed in to the method; it should have a length equal to the number of outcomes
in the model. The method adds the parameter values for each of the active outcomes in the
predicate.
</param>
</member>
<member name="E:SharpEntropy.GisTrainer.TrainingProgress">
<summary>
Used to provide informational messages regarding the
progress of the training algorithm.
</summary>
</member>
<member name="P:SharpEntropy.GisTrainer.Smoothing">
<summary>
Sets whether this trainer will use smoothing while training the model.
This can improve model accuracy, though training will potentially take
longer and use more memory. Model size will also be larger.
</summary>
<remarks>
Initial testing indicates improvements for models built on small data sets and
few outcomes, but performance degradation for those with large data
sets and lots of outcomes.
</remarks>
</member>
<member name="P:SharpEntropy.GisTrainer.UseSlackParameter">
<summary>
Sets whether this trainer will use slack parameters while training the model.
</summary>
</member>
<member name="P:SharpEntropy.GisTrainer.SmoothingObservation">
<summary>
If smoothing is in use, this value indicates the "number" of
times we want the trainer to imagine that it saw a feature that it
actually didn't see. Defaulted to 0.1.
</summary>
</member>
<member name="P:SharpEntropy.GisTrainer.CorrectionConstant">
<summary>
The correction constant for the model produced as a result of training.
</summary>
</member>
<member name="P:SharpEntropy.GisTrainer.CorrectionParameter">
<summary>
The correction parameter for the model produced as a result of training.
</summary>
</member>
<member name="M:SharpEntropy.GisTrainer.OutcomePatternComparer.Compare(System.Int32[],System.Int32[])">
<summary>
Compare two outcome patterns and determines which comes first,
based on the outcome ids (lower outcome ids first)
</summary>
<param name="firstPattern">
First outcome pattern to compare.
</param>
<param name="secondPattern">
Second outcome pattern to compare.
</param>
<returns></returns>
</member>
<member name="T:SharpEntropy.TrainingProgressEventArgs">
<summary>
Event arguments class for training progress events.
</summary>
</member>
<member name="M:SharpEntropy.TrainingProgressEventArgs.#ctor(System.String)">
<summary>
Constructor for the training progress event arguments.
</summary>
<param name="message">
Information message about the progress of training.
</param>
</member>
<member name="P:SharpEntropy.TrainingProgressEventArgs.Message">
<summary>
Information message about the progress of training.
</summary>
</member>
<member name="T:SharpEntropy.TrainingProgressEventHandler">
<summary>
Event handler delegate for the training progress event.
</summary>
</member>
<member name="T:SharpEntropy.IContextGenerator">
<summary>
Generate contexts for maximum entropy decisions.
</summary>
<author>
Jason Baldridge
</author>
<author>
Richard J. Northedge
</author>
<version>
based on ContextGenerator.java, $Revision: 1.1.1.1 $, $Date: 2001/10/23 14:06:53 $
</version>
</member>
<member name="M:SharpEntropy.IContextGenerator.GetContext(System.Object)">
<summary>
Builds up the list of contextual predicates given an object.
</summary>
</member>
<member name="T:SharpEntropy.IO.BinaryGisModelReader">
<summary>
A reader for GIS models stored in a binary format. This format is not the one
used by the <see cref="T:SharpEntropy.IO.JavaBinaryGisModelReader">java version of MaxEnt</see>.
It has two main differences, designed for performance when loading the data
from file: first, it uses big endian data values, which is native for C#, and secondly it
encodes the outcome patterns and values in a more efficient manner.
</summary>
<author>
Jason Baldridge
</author>
<author>
Richard J. Northedge
</author>
<version>
based on BinaryGISModelReader.java, $Revision: 1.1.1.1 $, $Date: 2001/10/23 14:06:53 $
</version>
</member>
<member name="T:SharpEntropy.IO.GisModelReader">
<summary>
Abstract parent class for readers of GIS models.
</summary>
<author>
Jason Baldridge
</author>
<author>
Richard J. Northedge
</author>
<version>
based on GISModelReader.java, $Revision: 1.5 $, $Date: 2004/06/11 20:51:36 $
</version>
</member>
<member name="M:SharpEntropy.IO.GisModelReader.ReadModel">
<summary>
Retrieve a model from disk.
<p>This method delegates to worker methods for each part of this
sequence. If you are creating a reader that conforms largely to this
sequence but varies at one or more points, override the relevant worker
method(s) to achieve the required format.</p>
<p>If you are creating a reader for a format which does not follow this
sequence at all, override this method and ignore the
other ReadX methods provided in this abstract class.</p>
</summary>
<remarks>
Thie method assumes that models are saved in the
following sequence:
<p>GIS (model type identifier)</p>
<p>1. the correction constant (int)</p>
<p>2. the correction constant parameter (double)</p>
<p>3. outcomes</p>
<p>3a. number of outcomes (int)</p>
<p>3b. outcome names (string array - length specified in 3a)</p>
<p>4. predicates</p>