forked from eigenteam/eigen-git-mirror
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinverse.cpp
148 lines (123 loc) · 4.5 KB
/
inverse.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <[email protected]>
// Copyright (C) 2008 Benoit Jacob <[email protected]>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/LU>
template<typename MatrixType>
void inverse_for_fixed_size(const MatrixType&, typename internal::enable_if<MatrixType::SizeAtCompileTime==Dynamic>::type* = 0)
{
}
template<typename MatrixType>
void inverse_for_fixed_size(const MatrixType& m1, typename internal::enable_if<MatrixType::SizeAtCompileTime!=Dynamic>::type* = 0)
{
using std::abs;
MatrixType m2, identity = MatrixType::Identity();
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
//computeInverseAndDetWithCheck tests
//First: an invertible matrix
bool invertible;
Scalar det;
m2.setZero();
m1.computeInverseAndDetWithCheck(m2, det, invertible);
VERIFY(invertible);
VERIFY_IS_APPROX(identity, m1*m2);
VERIFY_IS_APPROX(det, m1.determinant());
m2.setZero();
m1.computeInverseWithCheck(m2, invertible);
VERIFY(invertible);
VERIFY_IS_APPROX(identity, m1*m2);
//Second: a rank one matrix (not invertible, except for 1x1 matrices)
VectorType v3 = VectorType::Random();
MatrixType m3 = v3*v3.transpose(), m4;
m3.computeInverseAndDetWithCheck(m4, det, invertible);
VERIFY( m1.rows()==1 ? invertible : !invertible );
VERIFY_IS_MUCH_SMALLER_THAN(abs(det-m3.determinant()), RealScalar(1));
m3.computeInverseWithCheck(m4, invertible);
VERIFY( m1.rows()==1 ? invertible : !invertible );
// check with submatrices
{
Matrix<Scalar, MatrixType::RowsAtCompileTime+1, MatrixType::RowsAtCompileTime+1, MatrixType::Options> m5;
m5.setRandom();
m5.topLeftCorner(m1.rows(),m1.rows()) = m1;
m2 = m5.template topLeftCorner<MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime>().inverse();
VERIFY_IS_APPROX( (m5.template topLeftCorner<MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime>()), m2.inverse() );
}
}
template<typename MatrixType> void inverse(const MatrixType& m)
{
/* this test covers the following files:
Inverse.h
*/
Index rows = m.rows();
Index cols = m.cols();
typedef typename MatrixType::Scalar Scalar;
MatrixType m1(rows, cols),
m2(rows, cols),
identity = MatrixType::Identity(rows, rows);
createRandomPIMatrixOfRank(rows,rows,rows,m1);
m2 = m1.inverse();
VERIFY_IS_APPROX(m1, m2.inverse() );
VERIFY_IS_APPROX((Scalar(2)*m2).inverse(), m2.inverse()*Scalar(0.5));
VERIFY_IS_APPROX(identity, m1.inverse() * m1 );
VERIFY_IS_APPROX(identity, m1 * m1.inverse() );
VERIFY_IS_APPROX(m1, m1.inverse().inverse() );
// since for the general case we implement separately row-major and col-major, test that
VERIFY_IS_APPROX(MatrixType(m1.transpose().inverse()), MatrixType(m1.inverse().transpose()));
inverse_for_fixed_size(m1);
// check in-place inversion
if(MatrixType::RowsAtCompileTime>=2 && MatrixType::RowsAtCompileTime<=4)
{
// in-place is forbidden
VERIFY_RAISES_ASSERT(m1 = m1.inverse());
}
else
{
m2 = m1.inverse();
m1 = m1.inverse();
VERIFY_IS_APPROX(m1,m2);
}
}
template<typename Scalar>
void inverse_zerosized()
{
Matrix<Scalar,Dynamic,Dynamic> A(0,0);
{
Matrix<Scalar,0,1> b, x;
x = A.inverse() * b;
}
{
Matrix<Scalar,Dynamic,Dynamic> b(0,1), x;
x = A.inverse() * b;
VERIFY_IS_EQUAL(x.rows(), 0);
VERIFY_IS_EQUAL(x.cols(), 1);
}
}
EIGEN_DECLARE_TEST(inverse)
{
int s = 0;
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( inverse(Matrix<double,1,1>()) );
CALL_SUBTEST_2( inverse(Matrix2d()) );
CALL_SUBTEST_3( inverse(Matrix3f()) );
CALL_SUBTEST_4( inverse(Matrix4f()) );
CALL_SUBTEST_4( inverse(Matrix<float,4,4,DontAlign>()) );
s = internal::random<int>(50,320);
CALL_SUBTEST_5( inverse(MatrixXf(s,s)) );
TEST_SET_BUT_UNUSED_VARIABLE(s)
CALL_SUBTEST_5( inverse_zerosized<float>() );
s = internal::random<int>(25,100);
CALL_SUBTEST_6( inverse(MatrixXcd(s,s)) );
TEST_SET_BUT_UNUSED_VARIABLE(s)
CALL_SUBTEST_7( inverse(Matrix4d()) );
CALL_SUBTEST_7( inverse(Matrix<double,4,4,DontAlign>()) );
CALL_SUBTEST_8( inverse(Matrix4cd()) );
}
}