forked from keras-team/tf-keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcallbacks_test.py
4207 lines (3709 loc) · 147 KB
/
callbacks_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for TF-Keras callbacks."""
import collections
import csv
import json
import os
import re
import shutil
import sys
import threading
import time
import unittest
from unittest import mock
import numpy as np
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import tf_keras as keras
from tf_keras.callbacks import BackupAndRestore
from tf_keras.callbacks import BackupAndRestoreExperimental
from tf_keras.callbacks import Callback
from tf_keras.engine import sequential
from tf_keras.layers import Activation
from tf_keras.layers import Dense
from tf_keras.optimizers import sgd
from tf_keras.optimizers.legacy import gradient_descent
from tf_keras.optimizers.schedules import learning_rate_schedule
from tf_keras.testing_infra import test_combinations
from tf_keras.testing_infra import test_utils
from tf_keras.utils import io_utils
from tf_keras.utils import np_utils
from tf_keras.utils import tf_utils
# isort: off
from tensorflow.python.platform import tf_logging as logging
try:
import h5py
except ImportError:
h5py = None
try:
import requests
except ImportError:
requests = None
TRAIN_SAMPLES = 10
TEST_SAMPLES = 10
NUM_CLASSES = 2
INPUT_DIM = 3
NUM_HIDDEN = 5
BATCH_SIZE = 5
CALLBACK_HOOKS = [
"on_batch_begin",
"on_batch_end",
"on_epoch_begin",
"on_epoch_end",
"on_predict_batch_begin",
"on_predict_batch_end",
"on_predict_begin",
"on_predict_end",
"on_test_batch_begin",
"on_test_batch_end",
"on_test_begin",
"on_test_end",
"on_train_batch_begin",
"on_train_batch_end",
"on_train_begin",
"on_train_end",
]
class Counter(keras.callbacks.Callback):
"""Counts the number of times each callback method was run.
Attributes:
method_counts: dict. Contains the counts of time each callback method was
run.
"""
def __init__(self):
self.method_counts = collections.defaultdict(int)
for method_name in CALLBACK_HOOKS:
setattr(
self,
method_name,
self.wrap_with_counts(method_name, getattr(self, method_name)),
)
def wrap_with_counts(self, method_name, method):
def _call_and_count(*args, **kwargs):
self.method_counts[method_name] += 1
return method(*args, **kwargs)
return _call_and_count
class CallAllHooks(keras.callbacks.Callback):
"""A callback that calls self._run for all hooks"""
def __init__(self):
for method_name in CALLBACK_HOOKS:
setattr(self, method_name, self._run)
def _run(self, *args, logs=None):
raise NotImplementedError
def _get_numpy():
return np.ones((10, 10)), np.ones((10, 1))
def _get_sequence():
class MySequence(keras.utils.data_utils.Sequence):
def __getitem__(self, _):
return np.ones((2, 10)), np.ones((2, 1))
def __len__(self):
return 5
return MySequence(), None
@test_combinations.run_with_all_model_types
@test_combinations.run_all_keras_modes
class CallbackCountsTest(test_combinations.TestCase):
def _check_counts(self, counter, expected_counts):
"""Checks that the counts registered by `counter` are those expected."""
for method_name, expected_count in expected_counts.items():
self.assertEqual(
counter.method_counts[method_name],
expected_count,
msg="For method {}: expected {}, got: {}".format(
method_name,
expected_count,
counter.method_counts[method_name],
),
)
def _get_model(self):
layers = [
keras.layers.Dense(10, activation="relu"),
keras.layers.Dense(1, activation="sigmoid"),
]
model = test_utils.get_model_from_layers(layers, input_shape=(10,))
model.compile(
tf.compat.v1.train.AdamOptimizer(0.001),
"binary_crossentropy",
run_eagerly=test_utils.should_run_eagerly(),
)
return model
@parameterized.named_parameters(
("with_numpy", _get_numpy()), ("with_sequence", _get_sequence())
)
def test_callback_hooks_are_called_in_fit(self, data):
if not tf.executing_eagerly():
self.skipTest("Behavior changed in v2.")
x, y = data
val_x, val_y = np.ones((4, 10)), np.ones((4, 1))
model = self._get_model()
counter = Counter()
model.fit(
x,
y,
validation_data=(val_x, val_y),
batch_size=2,
steps_per_epoch=5,
epochs=5,
callbacks=[counter],
)
self._check_counts(
counter,
{
"on_batch_begin": 25,
"on_batch_end": 25,
"on_epoch_begin": 5,
"on_epoch_end": 5,
"on_predict_batch_begin": 0,
"on_predict_batch_end": 0,
"on_predict_begin": 0,
"on_predict_end": 0,
"on_test_batch_begin": 10,
"on_test_batch_end": 10,
"on_test_begin": 5,
"on_test_end": 5,
"on_train_batch_begin": 25,
"on_train_batch_end": 25,
"on_train_begin": 1,
"on_train_end": 1,
},
)
@parameterized.named_parameters(
("with_numpy", _get_numpy()), ("with_sequence", _get_sequence())
)
def test_callback_hooks_are_called_in_evaluate(self, data):
x, y = data
is_sequence = isinstance(x, keras.utils.data_utils.Sequence)
model = self._get_model()
counter = Counter()
model.evaluate(
x,
y,
batch_size=2 if not is_sequence else None,
steps=5 if is_sequence else None,
callbacks=[counter],
)
self._check_counts(
counter,
{
"on_test_batch_begin": 5,
"on_test_batch_end": 5,
"on_test_begin": 1,
"on_test_end": 1,
},
)
@parameterized.named_parameters(
("with_numpy", _get_numpy()), ("with_sequence", _get_sequence())
)
def test_callback_hooks_are_called_in_predict(self, data):
x = data[0]
is_sequence = isinstance(x, keras.utils.data_utils.Sequence)
model = self._get_model()
counter = Counter()
model.predict(
x,
batch_size=2 if not is_sequence else None,
steps=5 if is_sequence else None,
callbacks=[counter],
)
self._check_counts(
counter,
{
"on_predict_batch_begin": 5,
"on_predict_batch_end": 5,
"on_predict_begin": 1,
"on_predict_end": 1,
},
)
def test_callback_list_methods(self):
counter = Counter()
callback_list = keras.callbacks.CallbackList([counter])
batch = 0
callback_list.on_test_batch_begin(batch)
callback_list.on_test_batch_end(batch)
callback_list.on_predict_batch_begin(batch)
callback_list.on_predict_batch_end(batch)
self._check_counts(
counter,
{
"on_test_batch_begin": 1,
"on_test_batch_end": 1,
"on_predict_batch_begin": 1,
"on_predict_batch_end": 1,
},
)
class KerasCallbacksTest(test_combinations.TestCase, parameterized.TestCase):
def _get_model(self, input_shape=None, additional_metrics=None):
additional_metrics = additional_metrics or []
layers = [
keras.layers.Dense(3, activation="relu"),
keras.layers.Dense(2, activation="softmax"),
]
model = test_utils.get_model_from_layers(
layers, input_shape=input_shape
)
model.compile(
loss="mse",
optimizer="rmsprop",
metrics=[keras.metrics.CategoricalAccuracy(name="my_acc")]
+ additional_metrics,
run_eagerly=test_utils.should_run_eagerly(),
)
return model
@test_combinations.run_with_all_model_types
@test_combinations.run_all_keras_modes
def test_progbar_logging(self):
model = self._get_model(input_shape=(3,))
x = tf.ones((200, 3))
y = tf.zeros((200, 2))
dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(10)
expected_log = r"(.*- loss:.*- my_acc:.*)+"
io_utils.enable_interactive_logging()
with self.captureWritesToStream(sys.stdout) as printed:
model.fit(dataset, epochs=2, steps_per_epoch=10)
self.assertRegex(printed.contents(), expected_log)
@test_combinations.run_with_all_model_types
@test_combinations.run_all_keras_modes
def test_progbar_logging_with_stateful_metrics(self):
class AddAllOnes(keras.metrics.Metric):
"""A simple metric that adds all the one's in `y_true`."""
def __init__(self, name="add_all_ones", **kwargs):
super().__init__(name=name, **kwargs)
self.total = self.add_weight(name="total", initializer="zeros")
def update_state(self, y_true, y_pred, sample_weight=None):
self.total.assign_add(
tf.cast(tf.reduce_sum(y_true), dtype=tf.float32)
)
def result(self):
return self.total
x_train = np.array([[0, 1, 0, 1, 0, 1, 0, 1]] * 8).astype(float)
y_train = np.array(
[[1, 0], [0, 0], [1, 1], [1, 0], [0, 1], [1, 0], [1, 0], [0, 0]]
)
# There are 7 ones in total in `y_train` after two batches.
expected_log = r"(.*- loss:.*- my_acc:.*- add_all_ones: 7.0000)+"
io_utils.enable_interactive_logging()
with self.captureWritesToStream(sys.stdout) as printed:
model = self._get_model(
input_shape=(8,), additional_metrics=[AddAllOnes()]
)
model.fit(x_train, y_train, verbose=1, batch_size=4, shuffle=False)
self.assertRegex(printed.contents(), expected_log)
# When not executing eagerly, `model.evaluate` does not have the metrics
# results printed.
if tf.executing_eagerly():
with self.captureWritesToStream(sys.stdout) as printed:
model = self._get_model(
input_shape=(8,), additional_metrics=[AddAllOnes()]
)
model.evaluate(x_train, y_train, verbose=1, batch_size=4)
self.assertRegex(printed.contents(), expected_log)
@test_combinations.run_all_keras_modes
def test_trivial_backup_restore(self):
if test_utils.should_run_eagerly():
model = keras.Sequential([keras.layers.Dense(1)])
model.compile("sgd", "mse")
cbk = BackupAndRestore(self.get_temp_dir())
model.fit(
np.ones((10, 1)), np.ones((10, 1)), epochs=1, callbacks=[cbk]
)
def test_backup_restore_train_counter(self):
if not tf.compat.v1.executing_eagerly():
self.skipTest(
"BackupAndRestore only available when eager execution is "
"enabled"
)
model = keras.Sequential([keras.layers.Dense(1)])
model.compile("sgd", "mse")
cbk = BackupAndRestore(self.get_temp_dir())
class InterruptingCallback(keras.callbacks.Callback):
"""A callback to intentionally introduce interruption to
training."""
def on_epoch_end(self, epoch, log=None):
logging.info(f"counter: {model._train_counter}")
if epoch == 5 or epoch == 12:
raise RuntimeError("Interruption")
self.get_temp_dir()
# The following asserts that the train counter is fault tolerant.
self.assertEqual(model._train_counter.numpy(), 0)
try:
model.fit(
np.ones((10, 1)),
np.ones((10, 1)),
epochs=20,
callbacks=[cbk, InterruptingCallback()],
)
except RuntimeError:
pass
self.assertEqual(model._train_counter.numpy(), 6)
try:
model.fit(
np.ones((10, 1)),
np.ones((10, 1)),
epochs=20,
callbacks=[cbk, InterruptingCallback()],
)
except RuntimeError:
pass
self.assertEqual(model._train_counter.numpy(), 13)
def _test_backup_and_restore_callback_with(self, cls):
if not tf.compat.v1.executing_eagerly():
self.skipTest(
"BackupAndRestore only available when execution is enabled"
)
class InterruptingCallback(keras.callbacks.Callback):
"""A callback to intentionally introduce interruption to
training."""
def on_epoch_end(self, epoch, log=None):
if epoch == 15:
raise RuntimeError("Interruption")
model = keras.Sequential([keras.layers.Dense(10)])
optimizer = sgd.SGD()
model.compile(optimizer, loss="mse")
x = tf.random.uniform((24, 10))
y = tf.random.uniform((24,))
dataset = tf.data.Dataset.from_tensor_slices((x, y)).repeat().batch(2)
backup_callback = cls(backup_dir=self.get_temp_dir())
try:
model.fit(
dataset,
epochs=20,
steps_per_epoch=5,
callbacks=[backup_callback, InterruptingCallback()],
)
except RuntimeError:
logging.warning("***Handling interruption***")
# This continues at the epoch where it left off.
model.fit(
dataset,
epochs=20,
steps_per_epoch=5,
callbacks=[backup_callback],
)
def _test_backup_and_restore_callback_at_steps(
self, cls, epoch_int, steps_int, mode
):
if not tf.compat.v1.executing_eagerly():
self.skipTest(
"BackupAndRestore only available when eager execution is "
"enabled"
)
class InterruptingCallback(keras.callbacks.Callback):
"""A callback to intentionally introduce interruption to
training."""
batch_count = 0
def on_epoch_end(self, epoch, log=None):
if epoch == epoch_int:
# Re-initialize optimizer to test state restore.
self.model.optimizer = sgd.SGD()
raise RuntimeError("EpochInterruption")
def on_batch_end(self, batch, logs=None):
self.batch_count += 1
if self.batch_count == steps_int:
# Re-initialize optimizer to test state restore.
self.model.optimizer = sgd.SGD()
raise RuntimeError("StepsInterruption")
class VerifyRestore(Callback):
"""Verify if the training restored to the correct epoch and step."""
def __init__(self, initial_epoch, initial_step):
super(VerifyRestore, self).__init__()
self.initial_epoch = initial_epoch
self.initial_step = initial_step
self._current_epoch = 0
def on_epoch_begin(self, epoch, logs=None):
self._current_epoch = epoch
if epoch < self.initial_epoch:
raise ValueError(
"Training did not restore at epoch (%d) and step (%d)"
% (self.initial_epoch, self.initial_step)
)
def on_batch_begin(self, batch, logs=None):
if (
batch <= self.initial_step
and self._current_epoch < self.initial_epoch
):
raise ValueError(
"Training did not restore at Epoch (%d) and step (%d)"
% (self.initial_epoch, self.initial_step)
)
def on_train_begin(self, logs=None):
if self.model.optimizer is None or not getattr(
self.model.optimizer, "_built", False
):
raise ValueError("Optimizer did not restore at train begin")
model = keras.Sequential([keras.layers.Dense(10)])
optimizer = sgd.SGD()
model.compile(optimizer, loss="mse")
x = tf.random.uniform((24, 10))
y = tf.random.uniform((24,))
dataset = tf.data.Dataset.from_tensor_slices((x, y)).repeat().batch(2)
save_freq_arg = "epoch" if mode == "epoch" else 7
backup_callback = cls(
backup_dir=self.get_temp_dir(), save_freq=save_freq_arg
)
# epoch where the restore should resume from
if save_freq_arg == "epoch":
init_epoch = epoch_int
init_step = 0
elif save_freq_arg:
init_epoch = int(((steps_int // 7) * 7) // 5)
init_step = int((((steps_int // 7) * 7) % 5) - 1)
else:
init_epoch = 0
init_step = 0
# callback to verify accurate training state restore
verify_restore_callback = VerifyRestore(
initial_epoch=init_epoch, initial_step=init_step
)
try:
model.fit(
dataset,
epochs=20,
steps_per_epoch=5,
callbacks=[backup_callback, InterruptingCallback()],
)
except RuntimeError as e:
if str(e) == "EpochInterruption":
logging.warning("***Handling interruption at epoch***")
elif str(e) == "StepsInterruption":
logging.warning("***Handling interruption at Nth step***")
# This continues at the epoch and step where it left off.
model.fit(
dataset,
epochs=20,
steps_per_epoch=5,
callbacks=[backup_callback, verify_restore_callback],
)
def test_experimental_backup_and_restore(self):
"""Ensure the legacy endpoint of `BackupAndRestore` gives warning."""
warning_messages = []
def warning(msg):
warning_messages.append(msg)
with tf.compat.v1.test.mock.patch.object(logging, "warning", warning):
self._test_backup_and_restore_callback_with(
BackupAndRestoreExperimental
)
warning_msg = (
"`tf.keras.callbacks.experimental.BackupAndRestore` "
"endpoint is deprecated"
)
self.assertIn(warning_msg, "\n".join(warning_messages))
warning_msg = "***Handling interruption***"
self.assertIn(warning_msg, "\n".join(warning_messages))
def test_backup_and_restore(self):
"""Ensure the public endpoint of `BackupAndRestore` is working."""
warning_messages = []
def warning(msg):
warning_messages.append(msg)
with tf.compat.v1.test.mock.patch.object(logging, "warning", warning):
self._test_backup_and_restore_callback_with(BackupAndRestore)
warning_msg = (
"`tf.keras.callbacks.experimental.BackupAndRestore` "
"endpoint is deprecated"
)
self.assertNotIn(warning_msg, "\n".join(warning_messages))
warning_msg = "***Handling interruption***"
self.assertIn(warning_msg, "\n".join(warning_messages))
def test_backup_and_restore_steps(self):
"""Ensure the public endpoint of `BackupAndRestore` is working."""
warning_messages = []
def warning(msg):
warning_messages.append(msg)
with tf.compat.v1.test.mock.patch.object(logging, "warning", warning):
# interrupt at steps before 1 epoch
self._test_backup_and_restore_callback_at_steps(
BackupAndRestore, epoch_int=20, steps_int=3, mode="batch"
)
warning_msg = (
"`tf.keras.callbacks.experimental.BackupAndRestore` "
"endpoint is deprecated"
)
self.assertNotIn(warning_msg, "\n".join(warning_messages))
warning_msg = "***Handling interruption at Nth step***"
self.assertIn(warning_msg, "\n".join(warning_messages))
# interrupt at steps after 1 epoch
warning_messages = []
with tf.compat.v1.test.mock.patch.object(logging, "warning", warning):
self._test_backup_and_restore_callback_at_steps(
BackupAndRestore, epoch_int=20, steps_int=8, mode="batch"
)
warning_msg = "***Handling interruption at Nth step***"
self.assertIn(warning_msg, "\n".join(warning_messages))
# interrupt at epoch before steps
warning_messages = []
with tf.compat.v1.test.mock.patch.object(logging, "warning", warning):
self._test_backup_and_restore_callback_at_steps(
BackupAndRestore, epoch_int=1, steps_int=12, mode="epoch"
)
warning_msg = "***Handling interruption at epoch***"
self.assertIn(warning_msg, "\n".join(warning_messages))
def test_backup_and_restore_steps_last_batch(self):
"""Ensure the public endpoint of `BackupAndRestore` is working."""
warning_messages = []
def warning(msg):
warning_messages.append(msg)
with tf.compat.v1.test.mock.patch.object(logging, "warning", warning):
# interrupt at last step in 7th epoch
self._test_backup_and_restore_callback_at_steps(
BackupAndRestore, epoch_int=20, steps_int=35, mode="batch"
)
warning_msg = (
"`tf.keras.callbacks.experimental.BackupAndRestore` "
"endpoint is deprecated"
)
self.assertNotIn(warning_msg, "\n".join(warning_messages))
warning_msg = "***Handling interruption at Nth step***"
self.assertIn(warning_msg, "\n".join(warning_messages))
def test_backup_and_restore_steps_false_save_freq(self):
"""Ensure the public endpoint of `BackupAndRestore` is working."""
warning_messages = []
def warning(msg):
warning_messages.append(msg)
with tf.compat.v1.test.mock.patch.object(logging, "warning", warning):
# interrupt at steps before 1 epoch
self._test_backup_and_restore_callback_at_steps(
BackupAndRestore, epoch_int=20, steps_int=3, mode=False
)
warning_msg = (
"`tf.keras.callbacks.experimental.BackupAndRestore` "
"endpoint is deprecated"
)
self.assertNotIn(warning_msg, "\n".join(warning_messages))
warning_msg = "***Handling interruption at Nth step***"
self.assertIn(warning_msg, "\n".join(warning_messages))
# interrupt at steps after 1 epoch
warning_messages = []
with tf.compat.v1.test.mock.patch.object(logging, "warning", warning):
self._test_backup_and_restore_callback_at_steps(
BackupAndRestore, epoch_int=20, steps_int=8, mode="batch"
)
warning_msg = "***Handling interruption at Nth step***"
self.assertIn(warning_msg, "\n".join(warning_messages))
# interrupt at epoch before steps
warning_messages = []
with tf.compat.v1.test.mock.patch.object(logging, "warning", warning):
self._test_backup_and_restore_callback_at_steps(
BackupAndRestore, epoch_int=1, steps_int=12, mode="epoch"
)
warning_msg = "***Handling interruption at epoch***"
self.assertIn(warning_msg, "\n".join(warning_messages))
def test_backup_and_restore_steps_clean_up(self):
if not tf.executing_eagerly():
self.skipTest(
"BackupAndRestore only available when eager execution is "
"enabled."
)
path = self.get_temp_dir()
callback = BackupAndRestore(path, delete_checkpoint=True)
model = keras.Sequential([keras.layers.Dense(10)])
optimizer = gradient_descent.SGD()
model.compile(optimizer, loss="mse")
x = tf.random.uniform((24, 10))
y = tf.random.uniform((24,))
dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(2)
model.fit(dataset, epochs=1, callbacks=[callback])
self.assertEmpty(os.listdir(path))
callback = BackupAndRestore(path, delete_checkpoint=False)
model.fit(dataset, epochs=1, callbacks=[callback])
self.assertNotEmpty(os.listdir(path))
@test_combinations.run_all_keras_modes
def test_callback_warning(self):
class SleepCallback(keras.callbacks.Callback):
def on_train_batch_end(self, batch, logs=None):
time.sleep(0.1)
model = sequential.Sequential()
model.add(keras.layers.Dense(1))
model.compile(
"sgd", loss="mse", run_eagerly=test_utils.should_run_eagerly()
)
warning_messages = []
def warning(msg):
warning_messages.append(msg)
with tf.compat.v1.test.mock.patch.object(logging, "warning", warning):
model.fit(
np.ones((16, 1), "float32"),
np.ones((16, 1), "float32"),
batch_size=3,
epochs=1,
callbacks=[SleepCallback()],
)
warning_msg = (
"Callback method `on_train_batch_end` is slow compared "
"to the batch time"
)
self.assertIn(warning_msg, "\n".join(warning_messages))
@test_combinations.run_all_keras_modes
def test_default_callbacks_no_warning(self):
# Test that without the callback no warning is raised
model = sequential.Sequential()
model.add(keras.layers.Dense(1))
model.compile(
"sgd", loss="mse", run_eagerly=test_utils.should_run_eagerly()
)
warning_messages = []
def warning(msg):
warning_messages.append(msg)
with tf.compat.v1.test.mock.patch.object(logging, "warning", warning):
model.fit(
np.ones((16, 1), "float32"),
np.ones((16, 1), "float32"),
batch_size=3,
epochs=1,
)
self.assertListEqual(warning_messages, [])
@test_combinations.run_with_all_model_types(exclude_models="functional")
@test_combinations.run_all_keras_modes
def test_progbar_logging_deferred_model_build(self):
model = self._get_model()
self.assertFalse(model.built)
x = tf.ones((200, 3))
y = tf.zeros((200, 2))
dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(10)
expected_log = r"(.*- loss:.*- my_acc:.*)+"
io_utils.enable_interactive_logging()
with self.captureWritesToStream(sys.stdout) as printed:
model.fit(dataset, epochs=2, steps_per_epoch=10)
self.assertRegex(printed.contents(), expected_log)
@test_combinations.run_with_all_model_types
@test_combinations.run_all_keras_modes
def test_progbar_logging_validation_data(self):
model = self._get_model(input_shape=(3,))
x = tf.ones((50, 3))
y = tf.zeros((50, 2))
training_dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(10)
val_dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(10)
expected_log = (
r"(.*5/5.*- loss:.*- my_acc:.*- val_loss:.*- val_my_acc:.*)+"
)
io_utils.enable_interactive_logging()
with self.captureWritesToStream(sys.stdout) as printed:
model.fit(training_dataset, epochs=2, validation_data=val_dataset)
self.assertRegex(printed.contents(), expected_log)
@test_combinations.run_with_all_model_types
@test_combinations.run_all_keras_modes(always_skip_v1=True)
def test_progbar_logging_validation_split(self):
model = self._get_model(input_shape=(3,))
x = np.ones((100, 3))
y = np.zeros((100, 2))
expected_log = (
r"(?s).*1/2.*8/8.*- loss:.*- my_acc:.*- val_loss:.*- val_my_acc:"
r".*2/2.*8/8.*- loss:.*- my_acc:.*- val_loss:.*- val_my_acc:.*"
)
io_utils.enable_interactive_logging()
with self.captureWritesToStream(sys.stdout) as printed:
model.fit(x, y, batch_size=10, epochs=2, validation_split=0.2)
self.assertRegex(printed.contents(), expected_log)
@test_combinations.run_with_all_model_types
@test_combinations.run_all_keras_modes(always_skip_v1=True)
def test_progbar_logging_training_validation(self):
model = self._get_model(input_shape=(2,))
def generator():
for _ in range(100):
yield [1, 1], 1
training = (
tf.data.Dataset.from_generator(
generator=generator,
output_types=("float64", "float64"),
output_shapes=([2], []),
)
.batch(2)
.repeat()
)
validation = tf.data.Dataset.from_generator(
generator=generator,
output_types=("float64", "float64"),
output_shapes=([2], []),
).batch(2)
expected_log = (
r"(?s).*1/2.*20/20.*- loss:.*- my_acc:.*- val_loss:.*- val_my_acc:"
r".*2/2.*20/20.*- loss:.*- my_acc:.*- val_loss:.*- val_my_acc:.*"
)
io_utils.enable_interactive_logging()
with self.captureWritesToStream(sys.stdout) as printed:
model.fit(
x=training,
validation_data=validation,
epochs=2,
steps_per_epoch=20,
)
self.assertRegex(printed.contents(), expected_log)
@test_combinations.run_with_all_model_types
@test_combinations.run_all_keras_modes(always_skip_v1=True)
def test_progbar_logging_with_dataset_and_partial_batch(self):
model = self._get_model(input_shape=(2,))
def generator():
# Have a partial batch at the end.
for _ in range(9):
yield np.random.random(2), 1
training = tf.data.Dataset.from_generator(
generator=generator,
output_types=("float64", "float64"),
output_shapes=([2], []),
).batch(2)
validation = tf.data.Dataset.from_generator(
generator=generator,
output_types=("float64", "float64"),
output_shapes=([2], []),
).batch(2)
io_utils.enable_interactive_logging()
with self.captureWritesToStream(sys.stdout) as printed:
model.fit(x=training, validation_data=validation)
# Make sure the value of val_ metrics are not zeros.
log_content = printed.contents()
val_loss = re.findall(r"val_loss: (\d\.\d+)", log_content)
self.assertLen(val_loss, 1)
self.assertGreater(float(val_loss[0]), 0.0)
@test_combinations.run_with_all_model_types
@parameterized.named_parameters(
("h5", ".h5"),
("keras", ".keras"),
)
def test_ModelCheckpoint(self, save_format):
if save_format == ".h5" and h5py is None:
return # Skip test if models cannot be saved.
model_type = test_utils.get_model_type()
if model_type == "subclass":
# Skip test since subclassed models cannot be saved in .h5 format.
return
if not tf.__internal__.tf2.enabled():
self.skipTest("Checkpoint callback only available in v2.")
layers = [
keras.layers.Dense(
NUM_HIDDEN, input_dim=INPUT_DIM, activation="relu"
),
keras.layers.Dense(NUM_CLASSES, activation="softmax"),
]
model = test_utils.get_model_from_layers(layers, input_shape=(3,))
model.compile(
loss="categorical_crossentropy",
optimizer="rmsprop",
metrics=["acc"],
)
temp_dir = self.get_temp_dir()
self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True)
# Save model to a subdir inside the temp_dir so we can test
# automatic directory creation.
filepath = os.path.join(temp_dir, "subdir", "checkpoint" + save_format)
(x_train, y_train), (x_test, y_test) = test_utils.get_test_data(
train_samples=TRAIN_SAMPLES,
test_samples=TEST_SAMPLES,
input_shape=(INPUT_DIM,),
num_classes=NUM_CLASSES,
)
y_test = np_utils.to_categorical(y_test)
y_train = np_utils.to_categorical(y_train)
# Case 1
monitor = "val_loss"
save_best_only = False
mode = "auto"
cbks = [
keras.callbacks.ModelCheckpoint(
filepath,
monitor=monitor,
save_best_only=save_best_only,
mode=mode,
)
]
model.fit(
x_train,
y_train,
batch_size=BATCH_SIZE,
validation_data=(x_test, y_test),
callbacks=cbks,
epochs=1,
verbose=0,
)
assert os.path.exists(filepath)
os.remove(filepath)
# Case 2
mode = "min"
cbks = [
keras.callbacks.ModelCheckpoint(
filepath,
monitor=monitor,
save_best_only=save_best_only,
mode=mode,
)
]
model.fit(
x_train,
y_train,
batch_size=BATCH_SIZE,
validation_data=(x_test, y_test),
callbacks=cbks,
epochs=1,
verbose=0,
)
assert os.path.exists(filepath)
os.remove(filepath)
# Case 3
mode = "max"
monitor = "val_acc"
cbks = [
keras.callbacks.ModelCheckpoint(
filepath,
monitor=monitor,
save_best_only=save_best_only,
mode=mode,
)