forked from keras-team/tf-keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayout_map_test.py
412 lines (341 loc) · 15.1 KB
/
layout_map_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for layout_map."""
import os
import shutil
import numpy as np
import tensorflow.compat.v2 as tf
from tf_keras import backend
from tf_keras import layers
from tf_keras import models
from tf_keras.dtensor import dtensor_api as dtensor
from tf_keras.dtensor import layout_map as layout_map_lib
from tf_keras.dtensor import test_util
from tf_keras.utils import tf_utils
class LayoutMapTest(test_util.DTensorBaseTest):
def setUp(self):
super().setUp()
backend.enable_tf_random_generator()
tf_utils.set_random_seed(1337)
global_ids = test_util.create_device_ids_array((2, 2))
local_device_ids = np.ravel(global_ids).tolist()
mesh_dict = {
"CPU": dtensor.Mesh(
["X", "Y"],
global_ids,
local_device_ids,
test_util.create_device_list((2, 2), "CPU"),
)
}
self.mesh = self.configTestMesh(mesh_dict)
self.layout_2d = dtensor.Layout.replicated(self.mesh, rank=2)
self.layout_1d = dtensor.Layout.replicated(self.mesh, rank=1)
self.sharded_2d = dtensor.Layout.batch_sharded(self.mesh, "X", rank=2)
self.sharded_1d = dtensor.Layout.batch_sharded(self.mesh, "X", rank=1)
def test_add(self):
layout_map = layout_map_lib.LayoutMap()
layout_map["dense/kernel"] = self.layout_2d
layout_map["dense/bias"] = self.layout_1d
# Make there are two items in the map, and we access them via the
# underlying container at layout_map._layout_map
self.assertLen(layout_map._layout_map, 2)
self.assertEqual(layout_map._layout_map["dense/kernel"], self.layout_2d)
self.assertEqual(layout_map._layout_map["dense/bias"], self.layout_1d)
with self.assertRaisesRegex(ValueError, "dense/kernel already exist"):
layout_map["dense/kernel"] = self.layout_1d
with self.assertRaisesRegex(ValueError, "should be a dtensor.Layout"):
layout_map["conv.kernel"] = [1, 2, 3]
def test_get(self):
layout_map = layout_map_lib.LayoutMap()
layout_map["dense/kernel"] = self.sharded_2d
layout_map["dense/bias"] = self.sharded_1d
layout_map["dense.*kernel"] = self.layout_2d
layout_map["dense.*bias"] = self.layout_1d
layout_map[".*bias"] = self.sharded_1d
self.assertEqual(layout_map["dense/kernel"], self.sharded_2d)
self.assertEqual(layout_map["dense/bias"], self.sharded_1d)
# Map against the wildcard bias rule for dense, and based on the order
# of insertion, it will not use .*bias.
self.assertEqual(layout_map["dense_2/kernel"], self.layout_2d)
self.assertEqual(layout_map["dense_2/bias"], self.layout_1d)
self.assertIsNone(layout_map["conv2d/kernel"])
self.assertEqual(layout_map["conv2d/bias"], self.sharded_1d)
def test_delete(self):
layout_map = layout_map_lib.LayoutMap()
layout_map["dense/kernel"] = self.layout_2d
layout_map["dense/bias"] = self.layout_1d
self.assertEqual(layout_map.pop("dense/kernel"), self.layout_2d)
# Make sure to match against the exact string, not the regex
with self.assertRaises(KeyError):
layout_map.pop(".*bias")
# Make sure del also works
del layout_map["dense/bias"]
self.assertEmpty(layout_map._layout_map)
def test_len(self):
layout_map = layout_map_lib.LayoutMap()
self.assertEmpty(layout_map)
layout_map["dense/kernel"] = self.layout_2d
layout_map["dense/bias"] = self.layout_1d
self.assertLen(layout_map, 2)
def test_iter(self):
layout_map = layout_map_lib.LayoutMap()
layout_map["dense/kernel"] = self.layout_2d
layout_map["dense/bias"] = self.layout_1d
# Make sure the items are ordered based on the insertion order.
self.assertEqual(
list(layout_map.keys()), ["dense/kernel", "dense/bias"]
)
keys = []
values = []
for k, v in layout_map.items():
keys.append(k)
values.append(v)
self.assertEqual(keys, ["dense/kernel", "dense/bias"])
self.assertEqual(values, [self.layout_2d, self.layout_1d])
# Class used for testing.
class SubclassModel(models.Model):
def __init__(self, name=None):
super().__init__(name=name)
self.d1 = layers.Dense(1000)
self.d2 = layers.Dense(1000)
self.dropout = layers.Dropout(0.1)
def call(self, inputs, training=None):
x = self.d1(inputs)
x = self.dropout(x, training=training)
return self.d2(x)
class SubclassLayer(layers.Layer):
def __init__(self, unit):
super().__init__()
self.unit = unit
def build(self, input_shape):
weight_shape = (input_shape[-1], self.unit)
# Note that the variable name is "kernel", but assigned to "_weight"
# This will cause the checkpoint to record 2 dependencies.
self._weight = self.add_weight(shape=weight_shape, name="kernel")
def call(self, inputs):
return tf.matmul(inputs, self._weight)
class ObjectPathMappingTest(test_util.DTensorBaseTest):
def setUp(self):
super().setUp()
backend.enable_tf_random_generator()
tf_utils.set_random_seed(1337)
global_ids = test_util.create_device_ids_array((2, 2))
local_device_ids = np.ravel(global_ids).tolist()
mesh_dict = {
"CPU": dtensor.Mesh(
["X", "Y"],
global_ids,
local_device_ids,
test_util.create_device_list((2, 2), "CPU"),
)
}
self.mesh = self.configTestMesh(mesh_dict)
self.layout_2d = dtensor.Layout.replicated(self.mesh, rank=2)
self.layout_1d = dtensor.Layout.replicated(self.mesh, rank=1)
self.sharded_2d = dtensor.Layout.batch_sharded(self.mesh, "X", rank=2)
self.sharded_1d = dtensor.Layout.batch_sharded(self.mesh, "X", rank=1)
def test_init_subclass_model_variable_with_layout(self):
layout_map = layout_map_lib.LayoutMap(mesh=self.mesh)
layout_map["d1.kernel"] = self.layout_2d
layout_map["d1.bias"] = self.layout_1d
layout_map["d2.kernel"] = self.layout_2d
layout_map["d2.bias"] = self.layout_1d
with layout_map.scope():
model = SubclassModel(name="model")
# Init the model with eager tensor, make sure the model weights have
# correct layout, as well as produce correct result.
inputs = tf.zeros((10, 10))
inputs = dtensor.copy_to_mesh(inputs, layout=self.layout_2d)
result = model(inputs)
self.assertAllClose(result, tf.zeros((10, 1000)))
d1 = model.d1
d2 = model.d2
self.assertEqual(d1.kernel.layout, self.layout_2d)
self.assertEqual(d1.bias.layout, self.layout_1d)
self.assertEqual(d2.kernel.layout, self.layout_2d)
self.assertEqual(d2.bias.layout, self.layout_1d)
# Also make sure we repopulate the cached attributes like
# layer._trainable_weights
self.assertIs(d1.kernel, d1._trainable_weights[0])
self.assertIs(d1.bias, d1._trainable_weights[1])
self.assertIs(d2.kernel, d2._trainable_weights[0])
self.assertIs(d2.bias, d2._trainable_weights[1])
result = model(inputs, training=True)
self.assertAllClose(
result,
tf.experimental.dtensor.copy_to_mesh(
tf.zeros((10, 1000)), self.layout_2d
),
)
def test_init_functional_model_variable_with_layout(self):
# Note that the functional model is using layers name + attribute name
# the layer name are unique among the functional model, and when the
# layer doesn't have a name, keras will give it a unique name based on
# the layer class.
layout_map = layout_map_lib.LayoutMap(mesh=self.mesh)
layout_map["d1.kernel"] = self.layout_2d
layout_map["d1.bias"] = self.layout_1d
layout_map["d2.kernel"] = self.layout_2d
layout_map["d2.bias"] = self.layout_1d
with layout_map.scope():
inputs = layers.Input((10,), batch_size=10)
x = layers.Dense(20, name="d1")(inputs)
x = layers.Dropout(0.1)(x)
output = layers.Dense(30, name="d2")(x)
model = models.Model(inputs, output)
# It includes input layer as well.
self.assertLen(model.layers, 4)
d1 = model.layers[1]
d2 = model.layers[3]
self.assertEqual(d1.kernel.layout, self.layout_2d)
self.assertEqual(d1.bias.layout, self.layout_1d)
self.assertEqual(d2.kernel.layout, self.layout_2d)
self.assertEqual(d2.bias.layout, self.layout_1d)
# Also make sure we repopulate the cached attributes like
# layer._trainable_weights
self.assertIs(d1.kernel, d1._trainable_weights[0])
self.assertIs(d1.bias, d1._trainable_weights[1])
self.assertIs(d2.kernel, d2._trainable_weights[0])
self.assertIs(d2.bias, d2._trainable_weights[1])
inputs = tf.zeros((10, 10))
inputs = dtensor.copy_to_mesh(inputs, layout=self.layout_2d)
result = model(inputs, training=True)
expected_result = tf.zeros((10, 30))
expected_result = dtensor.copy_to_mesh(
expected_result, layout=self.layout_2d
)
self.assertAllClose(result, expected_result)
def test_init_sequential_model_variable_with_layout(self):
# Note that the sequential model is using layers name + attribute name
# the layer name are unique among the functional model, and when the
# layer doesn't have a name, keras will give it a unique name based on
# the layer class.
layout_map = layout_map_lib.LayoutMap(mesh=self.mesh)
layout_map["d1.kernel"] = self.layout_2d
layout_map["d1.bias"] = self.layout_1d
layout_map["d2.kernel"] = self.layout_2d
layout_map["d2.bias"] = self.layout_1d
with layout_map.scope():
model = models.Sequential(
[
layers.Dense(20, name="d1", input_shape=(10,)),
layers.Dropout(0.1),
layers.Dense(30, name="d2"),
]
)
self.assertLen(model.layers, 3)
d1 = model.layers[0]
d2 = model.layers[2]
self.assertEqual(d1.kernel.layout, self.layout_2d)
self.assertEqual(d1.bias.layout, self.layout_1d)
self.assertEqual(d2.kernel.layout, self.layout_2d)
self.assertEqual(d2.bias.layout, self.layout_1d)
# Also make sure we repopulate the cached attributes like
# layer._trainable_weights
self.assertIs(d1.kernel, d1._trainable_weights[0])
self.assertIs(d1.bias, d1._trainable_weights[1])
self.assertIs(d2.kernel, d2._trainable_weights[0])
self.assertIs(d2.bias, d2._trainable_weights[1])
inputs = tf.zeros((10, 10))
inputs = dtensor.copy_to_mesh(inputs, layout=self.layout_2d)
result = model(inputs, training=True)
expected_result = tf.zeros((10, 30))
expected_result = dtensor.copy_to_mesh(
expected_result, layout=self.layout_2d
)
self.assertAllClose(result, expected_result)
def test_init_model_with_empty_layout_map(self):
# Create empty layout map, which means all the weights just default to
# all replicated.
layout_map = layout_map_lib.LayoutMap(mesh=self.mesh)
with layout_map.scope():
model = models.Sequential(
[
layers.Dense(20, name="d1", input_shape=(10,)),
layers.Dropout(0.1),
layers.Dense(30, name="d2"),
]
)
self.assertLen(model.layers, 3)
d1 = model.layers[0]
d2 = model.layers[2]
self.assertEqual(d1.kernel.layout, self.layout_2d)
self.assertEqual(d1.bias.layout, self.layout_1d)
self.assertEqual(d2.kernel.layout, self.layout_2d)
self.assertEqual(d2.bias.layout, self.layout_1d)
def test_weight_regularization(self):
layout_map = layout_map_lib.LayoutMap(mesh=self.mesh)
with layout_map.scope():
model = models.Sequential(
[
layers.Dense(
20,
name="d1",
input_shape=(10,),
kernel_initializer="ones",
kernel_regularizer="l2",
),
layers.Dropout(0.1),
layers.Dense(
30,
name="d2",
kernel_initializer="ones",
kernel_regularizer="l2",
),
]
)
self.assertLen(model.losses, 2)
# kernel shape [10, 20] with all "1", timed by 0.01 from l2
self.assertAllClose(model.losses[0], 2.0)
# kernel shape [20, 30] with all "1", timed by 0.01 from l2
self.assertAllClose(model.losses[1], 6.0)
def test_dvariable_name(self):
layout_map = layout_map_lib.LayoutMap(mesh=self.mesh)
with layout_map.scope():
model = models.Sequential(
[
layers.Dense(20, name="d1", input_shape=(10,)),
layers.Dropout(0.1),
layers.Dense(30, name="d2"),
]
)
self.assertLen(model.layers, 3)
self.assertEqual(model.layers[0].kernel.name, "d1/kernel:0")
self.assertEqual(model.layers[0].bias.name, "d1/bias:0")
@tf.compat.v1.test.mock.patch.dict(
"os.environ", {"DTENSOR_ENABLE_CHECKPOINT_V2": "True"}
)
def test_checkpoint(self):
layout_map = layout_map_lib.LayoutMap(mesh=self.mesh)
with layout_map.scope():
model = models.Sequential(
[
layers.Dense(20, name="d1", input_shape=(10,)),
SubclassLayer(10),
]
)
cpt = tf.train.Checkpoint(root=model)
options = tf.train.CheckpointOptions(
experimental_io_device=dtensor.device_name()
)
tmpdir = self.get_temp_dir()
self.addCleanup(shutil.rmtree, tmpdir, ignore_errors=True)
saved_path = cpt.save(
os.path.join(tmpdir, "checkpoint"),
options=options,
)
cpt.restore(saved_path, options=options)
if __name__ == "__main__":
tf.test.main()