forked from keras-team/tf-keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimizers_test.py
253 lines (227 loc) · 8.64 KB
/
optimizers_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for initializers."""
import os
import numpy as np
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
from tf_keras import backend
from tf_keras import layers
from tf_keras import losses
from tf_keras import models
from tf_keras.dtensor import dtensor_api as dtensor
from tf_keras.dtensor import layout_map
from tf_keras.dtensor import test_util
from tf_keras.optimizers import adadelta
from tf_keras.optimizers import adagrad
from tf_keras.optimizers import adam
from tf_keras.optimizers import adamw
from tf_keras.optimizers import rmsprop
from tf_keras.optimizers import sgd
class OptimizersTest(test_util.DTensorBaseTest):
def setUp(self):
super().setUp()
global_ids = test_util.create_device_ids_array((2, 2))
local_device_ids = np.ravel(global_ids).tolist()
mesh_dict = {
"CPU": dtensor.Mesh(
["X", "Y"],
global_ids,
local_device_ids,
test_util.create_device_list((2, 2), "CPU"),
)
}
self.mesh = self.configTestMesh(mesh_dict)
def test_add_variable_from_reference(self):
optimizer = adam.Adam(mesh=self.mesh)
variable_init_value = tf.ones([4, 4], dtype=tf.float32)
variable_init_value = dtensor.copy_to_mesh(
variable_init_value,
layout=dtensor.Layout.replicated(self.mesh, rank=2),
)
model_variable = dtensor.DVariable(
variable_init_value, trainable=True, name="tmp"
)
state_variable = optimizer.add_variable_from_reference(
model_variable, "test"
)
self.assertEqual(state_variable._shared_name, "test/tmp")
self.assertAllClose(self.evaluate(state_variable), tf.zeros([4, 4]))
# Make sure the variable contains the correct layout info
self.assertEqual(state_variable.layout, model_variable.layout)
def test_build_index_dict(self):
optimizer = adam.Adam(mesh=self.mesh)
variable_init_value = tf.ones(shape=(), dtype=tf.float32)
variable_init_value = dtensor.copy_to_mesh(
variable_init_value,
layout=dtensor.Layout.replicated(self.mesh, rank=0),
)
var_list = [
dtensor.DVariable(variable_init_value, name=f"var{i}")
for i in range(10)
]
optimizer._build_index_dict(var_list)
self.assertEqual(
optimizer._index_dict[optimizer._var_key(var_list[7])], 7
)
def test_aggregate_gradients_noop(self):
optimizer = adam.Adam(mesh=self.mesh)
variable_init_value = tf.ones(shape=(), dtype=tf.float32)
model_variable = dtensor.DVariable(
variable_init_value,
trainable=True,
layout=dtensor.Layout.replicated(self.mesh, rank=0),
)
grads = tf.ones_like(variable_init_value)
grad_and_var = zip([grads], [model_variable])
result = optimizer.aggregate_gradients(grad_and_var)
self.assertEqual(result, grad_and_var)
@parameterized.named_parameters(
(
"Adadelta",
adadelta.Adadelta,
{},
[
"Adadelta/accumulated_grad/Variable",
"Adadelta/accumulated_delta_var/Variable",
"iteration",
],
),
(
"Adam",
adam.Adam,
{"amsgrad": True},
[
"Adam/m/Variable",
"Adam/v/Variable",
"Adam/vhat/Variable",
"iteration",
],
),
(
"AdamW",
adamw.AdamW,
{"amsgrad": True},
[
"AdamW/m/Variable",
"AdamW/v/Variable",
"AdamW/vhat/Variable",
"iteration",
],
),
(
"Adagrad",
adagrad.Adagrad,
{},
["Adagrad/accumulator/Variable", "iteration"],
),
(
"RMSprop",
rmsprop.RMSprop,
{"momentum": 0.1, "centered": True},
[
"RMSprop/velocity/Variable",
"RMSprop/momentum/Variable",
"RMSprop/average_gradient/Variable",
"iteration",
],
),
(
"SGD",
sgd.SGD,
{"momentum": 0.1},
["SGD/m/Variable", "iteration"],
),
)
def test_apply_gradients(
self, optimizer_cls, init_args, expect_variable_names
):
optimizer = optimizer_cls(mesh=self.mesh, **init_args)
self.assertEqual(self.evaluate(optimizer.iterations), 0)
self.assertEqual(
optimizer.iterations.layout,
dtensor.Layout.replicated(self.mesh, rank=0),
)
variable_init_value = tf.ones([4, 4], dtype=tf.float32)
variable_init_value = dtensor.copy_to_mesh(
variable_init_value,
layout=dtensor.Layout.replicated(self.mesh, rank=2),
)
model_variable = dtensor.DVariable(variable_init_value, trainable=True)
grads = tf.ones_like(variable_init_value)
optimizer.apply_gradients(zip([grads], [model_variable]))
optimizer_variables = optimizer.variables
self.assertEqual(self.evaluate(optimizer.iterations), 1)
all_names = [var._shared_name for var in optimizer_variables]
self.assertCountEqual(all_names, expect_variable_names)
def test_embedding_lookup_backward_path(self):
# See b/265441685 for more context.
backend.enable_tf_random_generator()
os.environ[
"DTENSOR_ENABLE_REPLICATED_SPMD_AS_DEFAULT_TF.RESOURCESCATTERADD"
] = "1"
# Build a small functional model with embedding layer, it contains
# tf.gather ops which will trigger the _deduplicate_sparse_grad() code
# path. tf.unique op will have a shape mismatch issue for dtensor.
batch_size = 16
seq_length = 10
vocab_size = 100
output_size = 8
def produce_data():
inputs = tf.random.uniform(
maxval=vocab_size,
shape=(batch_size, seq_length),
dtype=tf.int32,
)
label = tf.random.uniform(
maxval=output_size, shape=(batch_size,), dtype=tf.int32
)
inputs = dtensor.copy_to_mesh(
inputs, layout=dtensor.Layout.replicated(self.mesh, rank=2)
)
inputs = dtensor.relayout(
inputs, dtensor.Layout.batch_sharded(self.mesh, "X", 2)
)
label = dtensor.copy_to_mesh(
label, layout=dtensor.Layout.replicated(self.mesh, rank=1)
)
label = dtensor.relayout(
label, dtensor.Layout.batch_sharded(self.mesh, "X", 1)
)
return inputs, label
with layout_map.LayoutMap(self.mesh).scope():
inputs = layers.Input(shape=(seq_length,))
x = layers.Embedding(vocab_size, 64)(inputs)
x = layers.GlobalAveragePooling1D()(x)
preds = layers.Dense(output_size, activation="softmax")(x)
model = models.Model(inputs, preds)
optimizer = adam.Adam(mesh=self.mesh)
@tf.function
def train_func(model, inputs, label, optimizer):
with tf.GradientTape() as tape:
output = model(inputs)
loss = losses.sparse_categorical_crossentropy(label, output)
optimizer.minimize(loss, model.variables, tape)
return loss
# The error only happens across the batch, where the value of
# tf.unique are different.
input1, label1 = produce_data()
train_func(model, input1, label1, optimizer)
input2, label2 = produce_data()
train_func(model, input2, label2, optimizer)
# Assert nothing here, and expect the train_func can run properly with
# different inputs.
if __name__ == "__main__":
tf.test.main()