forked from keras-team/tf-keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstrategy_integration_test.py
118 lines (105 loc) · 4.08 KB
/
strategy_integration_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for DTensor based strategy training."""
import numpy as np
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
from tf_keras import backend
from tf_keras import mixed_precision
from tf_keras.dtensor import integration_test_utils
from tf_keras.optimizers import adam
from tf_keras.utils import tf_utils
# isort: off
# Import the MirroredStrategy that is backed by DTensor
# It is not a public API yet, so we do a private symbol import for now.
from tensorflow.python.distribute.experimental import (
mirrored_strategy as dtensor_mirrored_strategy,
)
from tensorflow.dtensor.python.tests import test_util
class TrainingTest(test_util.DTensorBaseTest):
def setUp(self):
super().setUp()
backend.enable_tf_random_generator()
tf_utils.set_random_seed(1337)
global_ids = test_util.create_device_ids_array((2,))
local_device_ids = np.ravel(global_ids).tolist()
mesh_dict = {
device: tf.experimental.dtensor.Mesh(
["batch"],
global_ids,
local_device_ids,
test_util.create_device_list((2,), device),
)
for device in ("CPU", "GPU", "TPU")
}
self.mesh = self.configTestMesh(mesh_dict)
def tearDown(self):
super().tearDown()
# clean up the mixed precision setting if any.
mixed_precision.set_global_policy("float32")
@parameterized.product(
run_eagerly=[True, False],
jit_compile=[True, False],
optimizer_creator=[lambda: adam.Adam(), lambda: "adam"],
enable_mixed_precision=[True, False],
)
def test_model_fit(
self,
run_eagerly,
jit_compile,
optimizer_creator,
enable_mixed_precision,
):
if run_eagerly and jit_compile:
self.skipTest("run_eagerly can't run with jit_compile")
if enable_mixed_precision and self.mesh.device_type() != "GPU":
self.skipTest("Only run mixed_precision on GPU for performance")
if enable_mixed_precision:
mixed_precision.set_global_policy("mixed_float16")
dtensor_strategy = dtensor_mirrored_strategy.MirroredStrategy(
mesh=self.mesh
)
# Make fake MNIST-like image data.
batch_size = 64
dataset = tf.data.Dataset.from_tensor_slices(
(
np.random.uniform(size=(batch_size, 28, 28, 1)).astype(
np.float32
),
np.random.randint(0, 10, size=(batch_size,)),
)
)
dataset = dataset.shuffle(64).repeat().batch(64, drop_remainder=True)
with dtensor_strategy.scope():
model = integration_test_utils.get_model()
optimizer = optimizer_creator()
model.compile(
loss="SparseCategoricalCrossentropy",
optimizer=optimizer,
metrics="acc",
run_eagerly=run_eagerly,
jit_compile=jit_compile,
)
model.fit(dataset, steps_per_epoch=10)
prediction = model.predict(
np.random.uniform(size=(batch_size, 28, 28, 1)).astype(np.float32)
)
self.assertEqual(prediction.shape, (batch_size, 10))
if enable_mixed_precision:
self.assertEqual(prediction.dtype, tf.float16)
else:
self.assertEqual(prediction.dtype, tf.float32)
if __name__ == "__main__":
tf.test.main()