-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
41 lines (32 loc) · 1.02 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# coding=utf-8
from name_checker import BadNameModel
from config import Config
import os
import numpy as np
import tensorflow as tf
import time
os.system('nvidia-smi -q -d Memory |grep -A4 GPU|grep Free >tmp')
memory_gpu = [int(x.split()[2]) for x in open('tmp', 'r').readlines()]
print(memory_gpu, str(np.argmax(memory_gpu)))
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = str(np.argmax(memory_gpu))
os.system('rm tmp')
gpu = tf.config.experimental.list_physical_devices(device_type='GPU')
tf.config.experimental.set_memory_growth(gpu[0], True)
class Node:
def __init__(self, label="", parent=None, children=None, num=0):
if children is None:
children = []
self.label = label
self.parent = parent
self.children = children
self.num = num
def train():
my_config = Config()
my_model = BadNameModel(my_config)
my_model.train()
if __name__ == '__main__':
start = time.time()
train()
end = time.time()
print(end - start)