forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
blk-settings.c
837 lines (750 loc) · 26.3 KB
/
blk-settings.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
/*
* Functions related to setting various queue properties from drivers
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
#include <linux/gcd.h>
#include <linux/lcm.h>
#include <linux/jiffies.h>
#include <linux/gfp.h>
#include "blk.h"
unsigned long blk_max_low_pfn;
EXPORT_SYMBOL(blk_max_low_pfn);
unsigned long blk_max_pfn;
/**
* blk_queue_prep_rq - set a prepare_request function for queue
* @q: queue
* @pfn: prepare_request function
*
* It's possible for a queue to register a prepare_request callback which
* is invoked before the request is handed to the request_fn. The goal of
* the function is to prepare a request for I/O, it can be used to build a
* cdb from the request data for instance.
*
*/
void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
{
q->prep_rq_fn = pfn;
}
EXPORT_SYMBOL(blk_queue_prep_rq);
/**
* blk_queue_unprep_rq - set an unprepare_request function for queue
* @q: queue
* @ufn: unprepare_request function
*
* It's possible for a queue to register an unprepare_request callback
* which is invoked before the request is finally completed. The goal
* of the function is to deallocate any data that was allocated in the
* prepare_request callback.
*
*/
void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
{
q->unprep_rq_fn = ufn;
}
EXPORT_SYMBOL(blk_queue_unprep_rq);
/**
* blk_queue_merge_bvec - set a merge_bvec function for queue
* @q: queue
* @mbfn: merge_bvec_fn
*
* Usually queues have static limitations on the max sectors or segments that
* we can put in a request. Stacking drivers may have some settings that
* are dynamic, and thus we have to query the queue whether it is ok to
* add a new bio_vec to a bio at a given offset or not. If the block device
* has such limitations, it needs to register a merge_bvec_fn to control
* the size of bio's sent to it. Note that a block device *must* allow a
* single page to be added to an empty bio. The block device driver may want
* to use the bio_split() function to deal with these bio's. By default
* no merge_bvec_fn is defined for a queue, and only the fixed limits are
* honored.
*/
void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
{
q->merge_bvec_fn = mbfn;
}
EXPORT_SYMBOL(blk_queue_merge_bvec);
void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
{
q->softirq_done_fn = fn;
}
EXPORT_SYMBOL(blk_queue_softirq_done);
void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
{
q->rq_timeout = timeout;
}
EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
{
q->rq_timed_out_fn = fn;
}
EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
{
q->lld_busy_fn = fn;
}
EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
/**
* blk_set_default_limits - reset limits to default values
* @lim: the queue_limits structure to reset
*
* Description:
* Returns a queue_limit struct to its default state.
*/
void blk_set_default_limits(struct queue_limits *lim)
{
lim->max_segments = BLK_MAX_SEGMENTS;
lim->max_integrity_segments = 0;
lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
lim->max_write_same_sectors = 0;
lim->max_discard_sectors = 0;
lim->discard_granularity = 0;
lim->discard_alignment = 0;
lim->discard_misaligned = 0;
lim->discard_zeroes_data = 0;
lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
lim->alignment_offset = 0;
lim->io_opt = 0;
lim->misaligned = 0;
lim->cluster = 1;
}
EXPORT_SYMBOL(blk_set_default_limits);
/**
* blk_set_stacking_limits - set default limits for stacking devices
* @lim: the queue_limits structure to reset
*
* Description:
* Returns a queue_limit struct to its default state. Should be used
* by stacking drivers like DM that have no internal limits.
*/
void blk_set_stacking_limits(struct queue_limits *lim)
{
blk_set_default_limits(lim);
/* Inherit limits from component devices */
lim->discard_zeroes_data = 1;
lim->max_segments = USHRT_MAX;
lim->max_hw_sectors = UINT_MAX;
lim->max_sectors = UINT_MAX;
lim->max_write_same_sectors = UINT_MAX;
}
EXPORT_SYMBOL(blk_set_stacking_limits);
/**
* blk_queue_make_request - define an alternate make_request function for a device
* @q: the request queue for the device to be affected
* @mfn: the alternate make_request function
*
* Description:
* The normal way for &struct bios to be passed to a device
* driver is for them to be collected into requests on a request
* queue, and then to allow the device driver to select requests
* off that queue when it is ready. This works well for many block
* devices. However some block devices (typically virtual devices
* such as md or lvm) do not benefit from the processing on the
* request queue, and are served best by having the requests passed
* directly to them. This can be achieved by providing a function
* to blk_queue_make_request().
*
* Caveat:
* The driver that does this *must* be able to deal appropriately
* with buffers in "highmemory". This can be accomplished by either calling
* __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
* blk_queue_bounce() to create a buffer in normal memory.
**/
void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
{
/*
* set defaults
*/
q->nr_requests = BLKDEV_MAX_RQ;
q->make_request_fn = mfn;
blk_queue_dma_alignment(q, 511);
blk_queue_congestion_threshold(q);
q->nr_batching = BLK_BATCH_REQ;
blk_set_default_limits(&q->limits);
/*
* by default assume old behaviour and bounce for any highmem page
*/
blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
}
EXPORT_SYMBOL(blk_queue_make_request);
/**
* blk_queue_bounce_limit - set bounce buffer limit for queue
* @q: the request queue for the device
* @dma_mask: the maximum address the device can handle
*
* Description:
* Different hardware can have different requirements as to what pages
* it can do I/O directly to. A low level driver can call
* blk_queue_bounce_limit to have lower memory pages allocated as bounce
* buffers for doing I/O to pages residing above @dma_mask.
**/
void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
{
unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
int dma = 0;
q->bounce_gfp = GFP_NOIO;
#if BITS_PER_LONG == 64
/*
* Assume anything <= 4GB can be handled by IOMMU. Actually
* some IOMMUs can handle everything, but I don't know of a
* way to test this here.
*/
if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
dma = 1;
q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
#else
if (b_pfn < blk_max_low_pfn)
dma = 1;
q->limits.bounce_pfn = b_pfn;
#endif
if (dma) {
init_emergency_isa_pool();
q->bounce_gfp = GFP_NOIO | GFP_DMA;
q->limits.bounce_pfn = b_pfn;
}
}
EXPORT_SYMBOL(blk_queue_bounce_limit);
/**
* blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
* @limits: the queue limits
* @max_hw_sectors: max hardware sectors in the usual 512b unit
*
* Description:
* Enables a low level driver to set a hard upper limit,
* max_hw_sectors, on the size of requests. max_hw_sectors is set by
* the device driver based upon the combined capabilities of I/O
* controller and storage device.
*
* max_sectors is a soft limit imposed by the block layer for
* filesystem type requests. This value can be overridden on a
* per-device basis in /sys/block/<device>/queue/max_sectors_kb.
* The soft limit can not exceed max_hw_sectors.
**/
void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors)
{
if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
printk(KERN_INFO "%s: set to minimum %d\n",
__func__, max_hw_sectors);
}
limits->max_hw_sectors = max_hw_sectors;
limits->max_sectors = min_t(unsigned int, max_hw_sectors,
BLK_DEF_MAX_SECTORS);
}
EXPORT_SYMBOL(blk_limits_max_hw_sectors);
/**
* blk_queue_max_hw_sectors - set max sectors for a request for this queue
* @q: the request queue for the device
* @max_hw_sectors: max hardware sectors in the usual 512b unit
*
* Description:
* See description for blk_limits_max_hw_sectors().
**/
void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
{
blk_limits_max_hw_sectors(&q->limits, max_hw_sectors);
}
EXPORT_SYMBOL(blk_queue_max_hw_sectors);
/**
* blk_queue_max_discard_sectors - set max sectors for a single discard
* @q: the request queue for the device
* @max_discard_sectors: maximum number of sectors to discard
**/
void blk_queue_max_discard_sectors(struct request_queue *q,
unsigned int max_discard_sectors)
{
q->limits.max_discard_sectors = max_discard_sectors;
}
EXPORT_SYMBOL(blk_queue_max_discard_sectors);
/**
* blk_queue_max_write_same_sectors - set max sectors for a single write same
* @q: the request queue for the device
* @max_write_same_sectors: maximum number of sectors to write per command
**/
void blk_queue_max_write_same_sectors(struct request_queue *q,
unsigned int max_write_same_sectors)
{
q->limits.max_write_same_sectors = max_write_same_sectors;
}
EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
/**
* blk_queue_max_segments - set max hw segments for a request for this queue
* @q: the request queue for the device
* @max_segments: max number of segments
*
* Description:
* Enables a low level driver to set an upper limit on the number of
* hw data segments in a request.
**/
void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
{
if (!max_segments) {
max_segments = 1;
printk(KERN_INFO "%s: set to minimum %d\n",
__func__, max_segments);
}
q->limits.max_segments = max_segments;
}
EXPORT_SYMBOL(blk_queue_max_segments);
/**
* blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
* @q: the request queue for the device
* @max_size: max size of segment in bytes
*
* Description:
* Enables a low level driver to set an upper limit on the size of a
* coalesced segment
**/
void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
{
if (max_size < PAGE_CACHE_SIZE) {
max_size = PAGE_CACHE_SIZE;
printk(KERN_INFO "%s: set to minimum %d\n",
__func__, max_size);
}
q->limits.max_segment_size = max_size;
}
EXPORT_SYMBOL(blk_queue_max_segment_size);
/**
* blk_queue_logical_block_size - set logical block size for the queue
* @q: the request queue for the device
* @size: the logical block size, in bytes
*
* Description:
* This should be set to the lowest possible block size that the
* storage device can address. The default of 512 covers most
* hardware.
**/
void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
{
q->limits.logical_block_size = size;
if (q->limits.physical_block_size < size)
q->limits.physical_block_size = size;
if (q->limits.io_min < q->limits.physical_block_size)
q->limits.io_min = q->limits.physical_block_size;
}
EXPORT_SYMBOL(blk_queue_logical_block_size);
/**
* blk_queue_physical_block_size - set physical block size for the queue
* @q: the request queue for the device
* @size: the physical block size, in bytes
*
* Description:
* This should be set to the lowest possible sector size that the
* hardware can operate on without reverting to read-modify-write
* operations.
*/
void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
{
q->limits.physical_block_size = size;
if (q->limits.physical_block_size < q->limits.logical_block_size)
q->limits.physical_block_size = q->limits.logical_block_size;
if (q->limits.io_min < q->limits.physical_block_size)
q->limits.io_min = q->limits.physical_block_size;
}
EXPORT_SYMBOL(blk_queue_physical_block_size);
/**
* blk_queue_alignment_offset - set physical block alignment offset
* @q: the request queue for the device
* @offset: alignment offset in bytes
*
* Description:
* Some devices are naturally misaligned to compensate for things like
* the legacy DOS partition table 63-sector offset. Low-level drivers
* should call this function for devices whose first sector is not
* naturally aligned.
*/
void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
{
q->limits.alignment_offset =
offset & (q->limits.physical_block_size - 1);
q->limits.misaligned = 0;
}
EXPORT_SYMBOL(blk_queue_alignment_offset);
/**
* blk_limits_io_min - set minimum request size for a device
* @limits: the queue limits
* @min: smallest I/O size in bytes
*
* Description:
* Some devices have an internal block size bigger than the reported
* hardware sector size. This function can be used to signal the
* smallest I/O the device can perform without incurring a performance
* penalty.
*/
void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
{
limits->io_min = min;
if (limits->io_min < limits->logical_block_size)
limits->io_min = limits->logical_block_size;
if (limits->io_min < limits->physical_block_size)
limits->io_min = limits->physical_block_size;
}
EXPORT_SYMBOL(blk_limits_io_min);
/**
* blk_queue_io_min - set minimum request size for the queue
* @q: the request queue for the device
* @min: smallest I/O size in bytes
*
* Description:
* Storage devices may report a granularity or preferred minimum I/O
* size which is the smallest request the device can perform without
* incurring a performance penalty. For disk drives this is often the
* physical block size. For RAID arrays it is often the stripe chunk
* size. A properly aligned multiple of minimum_io_size is the
* preferred request size for workloads where a high number of I/O
* operations is desired.
*/
void blk_queue_io_min(struct request_queue *q, unsigned int min)
{
blk_limits_io_min(&q->limits, min);
}
EXPORT_SYMBOL(blk_queue_io_min);
/**
* blk_limits_io_opt - set optimal request size for a device
* @limits: the queue limits
* @opt: smallest I/O size in bytes
*
* Description:
* Storage devices may report an optimal I/O size, which is the
* device's preferred unit for sustained I/O. This is rarely reported
* for disk drives. For RAID arrays it is usually the stripe width or
* the internal track size. A properly aligned multiple of
* optimal_io_size is the preferred request size for workloads where
* sustained throughput is desired.
*/
void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
{
limits->io_opt = opt;
}
EXPORT_SYMBOL(blk_limits_io_opt);
/**
* blk_queue_io_opt - set optimal request size for the queue
* @q: the request queue for the device
* @opt: optimal request size in bytes
*
* Description:
* Storage devices may report an optimal I/O size, which is the
* device's preferred unit for sustained I/O. This is rarely reported
* for disk drives. For RAID arrays it is usually the stripe width or
* the internal track size. A properly aligned multiple of
* optimal_io_size is the preferred request size for workloads where
* sustained throughput is desired.
*/
void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
{
blk_limits_io_opt(&q->limits, opt);
}
EXPORT_SYMBOL(blk_queue_io_opt);
/**
* blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
* @t: the stacking driver (top)
* @b: the underlying device (bottom)
**/
void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
{
blk_stack_limits(&t->limits, &b->limits, 0);
}
EXPORT_SYMBOL(blk_queue_stack_limits);
/**
* blk_stack_limits - adjust queue_limits for stacked devices
* @t: the stacking driver limits (top device)
* @b: the underlying queue limits (bottom, component device)
* @start: first data sector within component device
*
* Description:
* This function is used by stacking drivers like MD and DM to ensure
* that all component devices have compatible block sizes and
* alignments. The stacking driver must provide a queue_limits
* struct (top) and then iteratively call the stacking function for
* all component (bottom) devices. The stacking function will
* attempt to combine the values and ensure proper alignment.
*
* Returns 0 if the top and bottom queue_limits are compatible. The
* top device's block sizes and alignment offsets may be adjusted to
* ensure alignment with the bottom device. If no compatible sizes
* and alignments exist, -1 is returned and the resulting top
* queue_limits will have the misaligned flag set to indicate that
* the alignment_offset is undefined.
*/
int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
sector_t start)
{
unsigned int top, bottom, alignment, ret = 0;
t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
t->max_write_same_sectors = min(t->max_write_same_sectors,
b->max_write_same_sectors);
t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
b->seg_boundary_mask);
t->max_segments = min_not_zero(t->max_segments, b->max_segments);
t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
b->max_integrity_segments);
t->max_segment_size = min_not_zero(t->max_segment_size,
b->max_segment_size);
t->misaligned |= b->misaligned;
alignment = queue_limit_alignment_offset(b, start);
/* Bottom device has different alignment. Check that it is
* compatible with the current top alignment.
*/
if (t->alignment_offset != alignment) {
top = max(t->physical_block_size, t->io_min)
+ t->alignment_offset;
bottom = max(b->physical_block_size, b->io_min) + alignment;
/* Verify that top and bottom intervals line up */
if (max(top, bottom) & (min(top, bottom) - 1)) {
t->misaligned = 1;
ret = -1;
}
}
t->logical_block_size = max(t->logical_block_size,
b->logical_block_size);
t->physical_block_size = max(t->physical_block_size,
b->physical_block_size);
t->io_min = max(t->io_min, b->io_min);
t->io_opt = lcm(t->io_opt, b->io_opt);
t->cluster &= b->cluster;
t->discard_zeroes_data &= b->discard_zeroes_data;
/* Physical block size a multiple of the logical block size? */
if (t->physical_block_size & (t->logical_block_size - 1)) {
t->physical_block_size = t->logical_block_size;
t->misaligned = 1;
ret = -1;
}
/* Minimum I/O a multiple of the physical block size? */
if (t->io_min & (t->physical_block_size - 1)) {
t->io_min = t->physical_block_size;
t->misaligned = 1;
ret = -1;
}
/* Optimal I/O a multiple of the physical block size? */
if (t->io_opt & (t->physical_block_size - 1)) {
t->io_opt = 0;
t->misaligned = 1;
ret = -1;
}
/* Find lowest common alignment_offset */
t->alignment_offset = lcm(t->alignment_offset, alignment)
& (max(t->physical_block_size, t->io_min) - 1);
/* Verify that new alignment_offset is on a logical block boundary */
if (t->alignment_offset & (t->logical_block_size - 1)) {
t->misaligned = 1;
ret = -1;
}
/* Discard alignment and granularity */
if (b->discard_granularity) {
alignment = queue_limit_discard_alignment(b, start);
if (t->discard_granularity != 0 &&
t->discard_alignment != alignment) {
top = t->discard_granularity + t->discard_alignment;
bottom = b->discard_granularity + alignment;
/* Verify that top and bottom intervals line up */
if ((max(top, bottom) % min(top, bottom)) != 0)
t->discard_misaligned = 1;
}
t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
b->max_discard_sectors);
t->discard_granularity = max(t->discard_granularity,
b->discard_granularity);
t->discard_alignment = lcm(t->discard_alignment, alignment) %
t->discard_granularity;
}
return ret;
}
EXPORT_SYMBOL(blk_stack_limits);
/**
* bdev_stack_limits - adjust queue limits for stacked drivers
* @t: the stacking driver limits (top device)
* @bdev: the component block_device (bottom)
* @start: first data sector within component device
*
* Description:
* Merges queue limits for a top device and a block_device. Returns
* 0 if alignment didn't change. Returns -1 if adding the bottom
* device caused misalignment.
*/
int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
sector_t start)
{
struct request_queue *bq = bdev_get_queue(bdev);
start += get_start_sect(bdev);
return blk_stack_limits(t, &bq->limits, start);
}
EXPORT_SYMBOL(bdev_stack_limits);
/**
* disk_stack_limits - adjust queue limits for stacked drivers
* @disk: MD/DM gendisk (top)
* @bdev: the underlying block device (bottom)
* @offset: offset to beginning of data within component device
*
* Description:
* Merges the limits for a top level gendisk and a bottom level
* block_device.
*/
void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
sector_t offset)
{
struct request_queue *t = disk->queue;
if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
disk_name(disk, 0, top);
bdevname(bdev, bottom);
printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
top, bottom);
}
}
EXPORT_SYMBOL(disk_stack_limits);
/**
* blk_queue_dma_pad - set pad mask
* @q: the request queue for the device
* @mask: pad mask
*
* Set dma pad mask.
*
* Appending pad buffer to a request modifies the last entry of a
* scatter list such that it includes the pad buffer.
**/
void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
{
q->dma_pad_mask = mask;
}
EXPORT_SYMBOL(blk_queue_dma_pad);
/**
* blk_queue_update_dma_pad - update pad mask
* @q: the request queue for the device
* @mask: pad mask
*
* Update dma pad mask.
*
* Appending pad buffer to a request modifies the last entry of a
* scatter list such that it includes the pad buffer.
**/
void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
{
if (mask > q->dma_pad_mask)
q->dma_pad_mask = mask;
}
EXPORT_SYMBOL(blk_queue_update_dma_pad);
/**
* blk_queue_dma_drain - Set up a drain buffer for excess dma.
* @q: the request queue for the device
* @dma_drain_needed: fn which returns non-zero if drain is necessary
* @buf: physically contiguous buffer
* @size: size of the buffer in bytes
*
* Some devices have excess DMA problems and can't simply discard (or
* zero fill) the unwanted piece of the transfer. They have to have a
* real area of memory to transfer it into. The use case for this is
* ATAPI devices in DMA mode. If the packet command causes a transfer
* bigger than the transfer size some HBAs will lock up if there
* aren't DMA elements to contain the excess transfer. What this API
* does is adjust the queue so that the buf is always appended
* silently to the scatterlist.
*
* Note: This routine adjusts max_hw_segments to make room for appending
* the drain buffer. If you call blk_queue_max_segments() after calling
* this routine, you must set the limit to one fewer than your device
* can support otherwise there won't be room for the drain buffer.
*/
int blk_queue_dma_drain(struct request_queue *q,
dma_drain_needed_fn *dma_drain_needed,
void *buf, unsigned int size)
{
if (queue_max_segments(q) < 2)
return -EINVAL;
/* make room for appending the drain */
blk_queue_max_segments(q, queue_max_segments(q) - 1);
q->dma_drain_needed = dma_drain_needed;
q->dma_drain_buffer = buf;
q->dma_drain_size = size;
return 0;
}
EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
/**
* blk_queue_segment_boundary - set boundary rules for segment merging
* @q: the request queue for the device
* @mask: the memory boundary mask
**/
void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
{
if (mask < PAGE_CACHE_SIZE - 1) {
mask = PAGE_CACHE_SIZE - 1;
printk(KERN_INFO "%s: set to minimum %lx\n",
__func__, mask);
}
q->limits.seg_boundary_mask = mask;
}
EXPORT_SYMBOL(blk_queue_segment_boundary);
/**
* blk_queue_dma_alignment - set dma length and memory alignment
* @q: the request queue for the device
* @mask: alignment mask
*
* description:
* set required memory and length alignment for direct dma transactions.
* this is used when building direct io requests for the queue.
*
**/
void blk_queue_dma_alignment(struct request_queue *q, int mask)
{
q->dma_alignment = mask;
}
EXPORT_SYMBOL(blk_queue_dma_alignment);
/**
* blk_queue_update_dma_alignment - update dma length and memory alignment
* @q: the request queue for the device
* @mask: alignment mask
*
* description:
* update required memory and length alignment for direct dma transactions.
* If the requested alignment is larger than the current alignment, then
* the current queue alignment is updated to the new value, otherwise it
* is left alone. The design of this is to allow multiple objects
* (driver, device, transport etc) to set their respective
* alignments without having them interfere.
*
**/
void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
{
BUG_ON(mask > PAGE_SIZE);
if (mask > q->dma_alignment)
q->dma_alignment = mask;
}
EXPORT_SYMBOL(blk_queue_update_dma_alignment);
/**
* blk_queue_flush - configure queue's cache flush capability
* @q: the request queue for the device
* @flush: 0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
*
* Tell block layer cache flush capability of @q. If it supports
* flushing, REQ_FLUSH should be set. If it supports bypassing
* write cache for individual writes, REQ_FUA should be set.
*/
void blk_queue_flush(struct request_queue *q, unsigned int flush)
{
WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
flush &= ~REQ_FUA;
q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
}
EXPORT_SYMBOL_GPL(blk_queue_flush);
void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
{
q->flush_not_queueable = !queueable;
}
EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
static int __init blk_settings_init(void)
{
blk_max_low_pfn = max_low_pfn - 1;
blk_max_pfn = max_pfn - 1;
return 0;
}
subsys_initcall(blk_settings_init);