generated from csinva/cookiecutter-ml-research
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy path02_sub_linear.py
125 lines (109 loc) · 4.58 KB
/
02_sub_linear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
from os.path import dirname, join, expanduser
import sys
from imodelsx import submit_utils
path_to_file = os.path.dirname(os.path.abspath(__file__))
repo_dir = dirname(dirname(os.path.abspath(__file__)))
sys.path.append(repo_dir)
# main models
MIST7B = 'mistralai/Mistral-7B-Instruct-v0.2'
LLAMA8B = 'meta-llama/Meta-Llama-3-8B-Instruct'
LLAMA8B_fewshot = 'meta-llama/Meta-Llama-3-8B-Instruct-fewshot'
# other models (also -refined models)
LLAMA70B = 'meta-llama/Meta-Llama-3-70B-Instruct'
LLAMA70B_fewshot = 'meta-llama/Meta-Llama-3-70B-Instruct-fewshot'
MIXTMOE = 'mistralai/Mixtral-8x7B-Instruct-v0.1'
BEST_RUN = '/home/chansingh/mntv1/deep-fMRI/encoding/results_apr7/68936a10a548e2b4ce895d14047ac49e7a56c3217e50365134f78f990036c5f7'
# python 02_fit_encoding.py --encoding_model tabpfn --use_test_setup 1 --ndelays 1 --use_extract_only 0 --pc_components 100 --subject UTS03 --save_dir /home/chansingh/fmri/tabpfn_test/ --feature_space qa_embedder --qa_questions_version v3_boostexamples_merged --qa_embedding_model ensemble2 --feature_selection_alpha 0.28
# python 02_fit_encoding.py --encoding_model ridge --use_test_setup 1 --ndelays 1 --use_extract_only 0 --pc_components 100 --subject UTS03 --save_dir /home/chansingh/fmri/tabpfn_test/ --feature_space qa_embedder --qa_questions_version v3_boostexamples_merged --qa_embedding_model ensemble2 --feature_selection_alpha 0.28
params_shared_dict = {
# things to average over
# 'use_cache': [1],
# 'nboots': [5],
# 'encoding_model': ['ridge'],
'use_test_setup': [0],
'use_extract_only': [0],
'pc_components': [100],
'subject': [f'UTS0{k}' for k in range(1, 4)],
# 'subject': [f'UTS0{k}' for k in range(4, 9)],
# 'subject': ['UTS04'],
# ['UTS01', 'UTS02', 'UTS03', 'UTS04', 'UTS05', 'UTS06', 'UTS07', 'UTS08']
'save_dir': ['/home/chansingh/mntv1/deep-fMRI/encoding/jun8'],
# 'save_dir': ['/home/chansingh/mntv1/deep-fMRI/encoding/may7'],
# 'save_dir': ['/home/chansingh/mntv1/deep-fMRI/encoding/may27'],
'use_eval_brain_drive': [1],
'ndelays': [4, 8],
# 'ndelays': [8],
# default is -1, SO4-SO8 have 24 or 25 stories
'num_stories': [-1], # , 5, 10, 20],
# 'num_stories': [5, 10, 20],
}
params_coupled_dict = {
('feature_space', 'qa_questions_version', 'qa_embedding_model', 'embedding_layer'):
[
# baselines
# ('eng1000', None, None, None),
# ('bert-base-uncased', None, None, None),
# ('finetune_roberta-base-10', None, None, None),
# ('finetune_roberta-base_binary-10', None, None, None),
]
+
# llama versions
[
# (llama, None, None, embedding_layer)
# for llama in ['meta-llama/Llama-2-70b-hf', 'meta-llama/Meta-Llama-3-70B']
# for embedding_layer in [12, 24, 36, 48, 60]
]
+
# qa versions
[
# ensemble1
# questions: v4, v5, v6, v4_boostexamples, v1, v2, v3_boostexamples, v3, 'v3_boostexamples_merged'
('qa_embedder', 'v3_boostexamples_merged', model, None)
# ('qa_embedder', 'v2', model, None)
# for model in [MIST7B, LLAMA8B, LLAMA8B_fewshot]
for model in ['ensemble2'] # , LLAMA8B, LLAMA70B]
]
+
# qa 70B
[
# ('qa_embedder', version, model, None)
# for version in ['v1'] # , 'v2']
# for version in ['v3_boostexamples']
# for model in [LLAMA70B]
]
####################
# let's just skip llama 7B/8B
# [
# (llama, None, None, embedding_layer)
# for llama in ['meta-llama/Llama-2-7b-hf', 'meta-llama/Meta-Llama-3-8B']
# for embedding_layer in [6, 12, 18, 24, 30]
# ]
}
# Args list is a list of dictionaries
# If you want to do something special to remove some of these runs, can remove them before calling run_args_list
args_list = submit_utils.get_args_list(
params_shared_dict=params_shared_dict,
params_coupled_dict=params_coupled_dict,
)
script_name = join(repo_dir, 'experiments', '02_fit_encoding.py')
amlt_kwargs_cpu = {
'amlt_file': join(repo_dir, 'scripts', 'launch_cpu.yaml'),
# E4ads_v5 (30 GB), E8ads_v5 (56 GB), E16ads_v5 (120GB), E32ads_v5 (240GB), E64ads_v5 (480 GB)
# 'sku': 'E64ads_v5',
'sku': 'E32ads_v5',
# 'sku': 'E16ads_v5',
# 'sku': 'E8ads_v5',
'mnt_rename': ('/home/chansingh/mntv1', '/mntv1'),
}
submit_utils.run_args_list(
args_list,
script_name=script_name,
unique_seeds='seed_stories',
amlt_kwargs=amlt_kwargs_cpu,
# n_cpus=8,
# actually_run=False,
repeat_failed_jobs=True,
shuffle=True,
cmd_python=f'export HF_TOKEN={open(expanduser("~/.HF_TOKEN"), "r").read().strip()}; python',
)