forked from github/codeql
-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathgraph.py
executable file
·837 lines (749 loc) · 29.9 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
class SmallSet(list):
__slots__ = []
def update(self, other):
filtered = [x for x in other if x not in self]
self.extend(filtered)
def add(self, item):
if item not in self:
self.append(item)
class DiGraph(object):
'''A simple directed graph class (not necessarily a DAG).
Nodes must be hashable'''
def __init__(self, name = ""):
self.name = name
self.pred = {}
self.succ = {}
self.all_nodes = []
self.node_annotations = {}
self.edge_annotations = {}
def add_node(self, n):
'Add a node to the graph'
if n not in self.succ:
self.pred[n] = SmallSet()
self.succ[n] = SmallSet()
self.all_nodes.append(n)
def add_edge(self, x, y):
'''Add an edge (x -> y) to the graph. Return true if x, y was
previously in graph'''
if x in self.succ:
if y in self.succ[x]:
return True
else:
self.add_node(x)
self.add_node(y)
self.pred[y].add(x)
self.succ[x].add(y)
return False
def remove_node(self, x):
if x not in self.succ:
raise ValueError("Node %s does not exist." % x)
preds = self.pred[x]
succs = self.succ[x]
for p in preds:
self.succ[p].remove(x)
for s in succs:
self.pred[s].remove(x)
del self.succ[x]
del self.pred[x]
def remove_edge(self, x, y):
self.pred[y].remove(x)
self.succ[x].remove(y)
def annotate_edge(self, x, y, note):
'''Set the annotation on the edge (x -> y) to note.
'''
if x not in self.succ or y not in self.succ[x]:
raise ValueError("Edge %s -> %s does not exist." % (x, y))
self.edge_annotations[(x,y)] = note
def annotate_node(self, x, note):
'''Set the annotation on the node x to note.
'''
if x not in self.succ:
raise ValueError("Node %s does not exist." % x)
self.node_annotations[x] = note
def nodes(self):
'''Return an iterator for all nodes, in the form (node, note) pairs.
Do not modify the graph while using this iterator'''
for node in self.all_nodes:
yield node, self.node_annotations.get(node)
def edges(self):
'''Return an iterator for all edges, in the form of (pred, succ, note) triple.
Do not modify the graph while using this iterator'''
index = dict((n, i) for i, n in enumerate(self.all_nodes))
for n in self.all_nodes:
n_succs = self.succ[n]
for succ in sorted(n_succs, key = lambda n : index[n]):
yield n, succ, self.edge_annotations.get((n,succ))
def sources(self):
'''Return an iterator for all nodes with no predecessors.
Do not modify the graph while using this iterator'''
for n, p in self.pred.items():
if not p:
yield n
def __contains__(self, node):
return node in self.succ
class FlowGraph(DiGraph):
'''A DiGraph that supports the concept of definitions and variables.
Used to compute dominance and SSA form.
For more explanation of the algorithms used see
'Modern Compiler Implementation by Andrew W. Appel.
'''
def __init__(self, root, name = ""):
DiGraph.__init__(self, name)
self.definitions = {}
self.deletions = {}
self.uses = {}
self.use_all_nodes = set()
self.root = root
def clear_computed(self):
to_be_deleted = [attr for attr in self.__dict__ if attr[0] == '_']
for attr in to_be_deleted:
delattr(self, attr)
def _require(self, what):
'''Ensures that 'what' has been computed (computing if needed).'''
if hasattr(self, "_" + what):
return
setattr(self, "_" + what, getattr(self, "_compute_" + what)())
def add_deletion(self, node, var):
assert node in self.succ
self.deletions[node] = var
def add_definition(self, node, var):
assert node in self.succ
self.definitions[node] = var
def add_use(self, node, var):
assert node in self.succ, node
self.uses[node] = var
def use_all_defined_variables(self, node):
assert node in self.succ
self.use_all_nodes.add(node)
def _compute_depth_first_pre_order(self):
self._require("depth_first_pre_order_labels")
reachable = [ f for f in self.all_nodes if f in self._depth_first_pre_order_labels ]
return sorted(reachable, key = lambda f : -self._depth_first_pre_order_labels[f])
def _compute_reachable(self):
self._require("depth_first_pre_order")
return frozenset(self._depth_first_pre_order)
def reachable_nodes(self):
self._require("reachable")
return self._reachable
def _compute_reversed_depth_first_pre_order(self):
self._require("depth_first_pre_order")
return reversed(self._depth_first_pre_order)
def _compute_bb_depth_first_pre_order(self):
self._require('depth_first_pre_order')
self._require('bb_heads')
bbs = []
for n in self._depth_first_pre_order:
if n in self._bb_heads:
bbs.append(n)
return bbs
def _compute_bb_reversed_depth_first_pre_order(self):
self._require("bb_depth_first_pre_order")
return reversed(self._bb_depth_first_pre_order)
def _compute_depth_first_pre_order_labels(self):
'Compute order with depth first search.'
orders = {}
order = 0
nodes_to_visit = [ self.root ]
while nodes_to_visit:
node = nodes_to_visit[-1]
orders[node] = 0
if node in self.succ:
for succ in self.succ[node]:
if succ not in orders:
nodes_to_visit.append(succ)
else:
order += 1
orders[node] = order
if node is nodes_to_visit[-1]:
nodes_to_visit.pop()
order += 1
orders[node] = order
return orders
def _compute_idoms(self):
self._require("depth_first_pre_order")
idoms = {}
def idom_intersection(n1, n2):
'Determine the last common idom of n1, n2'
orders = self._depth_first_pre_order_labels
while n1 is not n2:
while orders[n1] < orders[n2]:
n1 = idoms[n1]
while orders[n2] < orders[n1]:
n2 = idoms[n2]
return n1
for node in self._depth_first_pre_order:
if len(self.pred[node]) == 1:
idoms[node] = next(iter(self.pred[node]))
else:
idom = None
for p in self.pred[node]:
if p == self.root:
idom = p
elif p in idoms:
if idom is None:
idom = p
else:
idom = idom_intersection(idom, p)
if idom is not None:
idoms[node] = idom
return idoms
def idoms(self):
'''Returns an iterable of node pairs: node, idom(node)'''
self._require('idoms')
idoms = self._idoms
for n in self.all_nodes:
if n in idoms:
yield n, idoms[n]
def _compute_dominance_frontier(self):
'''Compute the dominance frontier:
DF[n] = DF_local[n] Union over C in children DF_up[c]'''
def dominates(dom, node):
while node in idoms:
next_node = idoms[node]
if dom == next_node:
return True
node = next_node
return False
self._require('idoms')
idoms = self._idoms
dominance_frontier = {}
df_up = {}
dom_tree = _reverse_map(idoms)
self._require('reversed_depth_first_pre_order')
for node in self._reversed_depth_first_pre_order:
df_local_n = set(n for n in self.succ[node] if node != idoms[n])
dfn = df_local_n
if node in dom_tree:
for child in dom_tree[node]:
dfn.update(df_up[child])
dominance_frontier[node] = dfn
if node in idoms:
imm_dom = idoms[node]
df_up[node] = set(n for n in dfn if not dominates(imm_dom, n))
else:
df_up[node] = dfn
return dominance_frontier
def _compute_phi_nodes(self):
'''Compute the phi nodes for this graph.
A minimal set of phi-nodes are computed;
No phi-nodes are added unless the variable is live.
'''
self._require('dominance_frontier')
self._require('liveness')
dominance_frontier = self._dominance_frontier
definitions = dict(self.definitions)
# We must count deletions as definitions here. Otherwise, we can have
# uses of a deleted variable whose SSA definition is an actual definition,
# rather than a deletion.
definitions.update(self.deletions)
phi_nodes = {}
defsites = {}
for a in definitions.values():
defsites[a] = set()
for n in definitions:
a = definitions[n]
defsites[a].add(n)
for a in defsites:
W = set(defsites[a])
while W:
n = W.pop()
if n not in dominance_frontier:
continue
for y in dominance_frontier[n]:
if y not in phi_nodes:
phi_nodes[y] = set()
if a not in phi_nodes[y]:
phi_nodes[y].add(a)
if y not in definitions or a != definitions[y]:
W.add(y)
trimmed = {}
for node in phi_nodes:
assert node in self._bb_heads
if node not in self._liveness:
continue
new_phi_vars = set()
phi_vars = phi_nodes[node]
for v in phi_vars:
if v in self._liveness[node]:
new_phi_vars.add(v)
if new_phi_vars:
trimmed[node] = new_phi_vars
return trimmed
def _compute_ssa_data(self):
''' Compute the SSA variables, definitions, uses and phi-inputs.
'''
self._require('basic_blocks')
self._require('phi_nodes')
self._require('bb_depth_first_pre_order')
self._require('use_all')
phi_nodes = self._phi_nodes
reaching_ssa_vars = {}
work_set = set()
work_set.add(self.root)
ssa_defns = {}
ssa_uses = {}
ssa_phis = {}
ssa_vars = set()
ssa_var_cache = {}
def make_ssa_var(variable, node):
'''Ensure that there is no more than one SSA variable for each (variable, node) pair.'''
uid = (variable, node)
if uid in ssa_var_cache:
return ssa_var_cache[uid]
var = SSA_Var(variable, node)
ssa_var_cache[uid] = var
return var
for bb in self._bb_depth_first_pre_order:
#Track SSA variables in each BB.
reaching_ssa_vars[bb] = {}
for bb in self._bb_depth_first_pre_order:
live_vars = reaching_ssa_vars[bb].copy()
#Add an SSA definition for each phi-node.
if bb in phi_nodes:
variables = phi_nodes[bb]
for v in variables:
var = make_ssa_var(v, bb)
ssa_defns[var] = bb
live_vars[v] = var
for node in self.nodes_in_bb(bb):
#Add an SSA use for each use.
if node in self.uses:
a = self.uses[node]
if a not in live_vars:
#Treat a use as adding a reaching variable,
#since a second use, if it can be reached,
#will always find the variable defined.
var = make_ssa_var(a, node)
live_vars[a] = var
else:
var = live_vars[a]
ssa_vars.add(var)
ssa_uses[node] = [ var ]
#Add an SSA use for all live SSA variables for
#each use_all (end of module/class scope).
if node in self._use_all:
all_live = [ var for var in live_vars.values() if var.variable in self._use_all[node]]
ssa_uses[node] = all_live
ssa_vars.update(all_live)
#Add an SSA definition for each definition.
if node in self.definitions:
a = self.definitions[node]
var = make_ssa_var(a, node)
ssa_defns[var] = node
live_vars[a] = var
#Although deletions are not definitions, we treat them as such.
#SSA form has no concept of deletion, so we have to treat `del x`
#as `x = Undefined`.
if node in self.deletions:
a = self.deletions[node]
if a in live_vars:
var = live_vars[a]
ssa_vars.add(var)
ssa_uses[node] = [ var ]
else:
#If no var is defined here we don't need to create one
#as a new one will be immediately be defined by the deletion.
pass
var = make_ssa_var(a, node)
ssa_defns[var] = node
live_vars[a] = var
#Propagate set of reaching variables to
#successor blocks.
for n in self.succ[node]:
reaching_ssa_vars[n].update(live_vars)
if n in phi_nodes:
for v in phi_nodes[n]:
if v in live_vars:
var = make_ssa_var(v, n)
if var not in ssa_phis:
ssa_phis[var] = set()
ssa_vars.add(live_vars[v])
ssa_phis[var].add(live_vars[v])
#Prune unused definitions.
used_ssa_defns = {}
for var in ssa_defns:
if var in ssa_vars:
used_ssa_defns[var] = ssa_defns[var]
ssa_defns = used_ssa_defns
sorted_vars = list(self._sort_ssa_variables(ssa_vars))
assert set(sorted_vars) == ssa_vars
assert len(sorted_vars) == len(ssa_vars)
ssa_vars = sorted_vars
return ssa_vars, ssa_defns, ssa_uses, ssa_phis
def ssa_variables(self):
'''Returns all the SSA variables for this graph'''
self._require('ssa_data')
return self._ssa_data[0]
def _sort_ssa_variables(self, ssa_vars):
node_to_var = {}
for v in ssa_vars:
node = v.node
if node in node_to_var:
vset = node_to_var[node]
else:
vset = set()
node_to_var[node] = vset
vset.add(v)
for n in self.all_nodes:
if n in node_to_var:
variables = node_to_var[n]
for v in sorted(variables, key=lambda v:v.variable.id):
yield v
def ssa_definitions(self):
'''Returns all the SSA definition as an iterator of (node, variable) pairs.'''
self._require('ssa_data')
ssa_defns = self._ssa_data[1]
reversed_defns = _reverse_map(ssa_defns)
for n in self.all_nodes:
if n in reversed_defns:
variables = reversed_defns[n]
for v in sorted(variables, key=lambda v:v.variable.id):
yield n, v
def get_ssa_definition(self, var):
'''Returns the definition node of var. Returns None if there is no definition.'''
self._require('ssa_data')
ssa_defns = self._ssa_data[1]
return ssa_defns.get(var)
def ssa_uses(self):
'''Returns all the SSA uses as an iterator of (node, variable) pairs.'''
self._require('ssa_data')
ssa_uses = self._ssa_data[2]
for n in self.all_nodes:
if n in ssa_uses:
variables = ssa_uses[n]
for v in sorted(variables, key=lambda v:v.variable.id):
yield n, v
def get_ssa_variables_used(self, node):
'''Returns all the SSA variables used at this node'''
self._require('ssa_data')
ssa_uses = self._ssa_data[2]
return ssa_uses.get(node, ())
def ssa_phis(self):
'''Return all SSA phi inputs as an iterator of (variable, input-variable) pairs.'''
self._require('ssa_data')
ssa_phis = self._ssa_data[3]
ssa_vars = self._ssa_data[0]
indexed = dict((v, index) for index, v in enumerate(ssa_vars))
for v in ssa_vars:
if v not in ssa_phis:
continue
phis = ssa_phis[v]
for phi in sorted(phis, key=lambda v:indexed[v]):
yield v, phi
def _compute_bb_heads(self):
'''Compute all flow nodes that are the first node in a basic block.'''
bb_heads = set()
for node in self.all_nodes:
preds = self.pred[node]
if len(preds) != 1 or len(self.succ[preds[0]]) != 1:
bb_heads.add(node)
return bb_heads
def _compute_basic_blocks(self):
'''Compute Basic blocks membership'''
self._require('bb_heads')
basic_blocks = {}
bb_tails = {}
for bb in self._bb_heads:
for index, node in enumerate(self.nodes_in_bb(bb)):
basic_blocks[node] = bb, index
bb_tails[bb] = node
self._bb_tails = bb_tails
return basic_blocks
def get_basic_blocks(self):
self._require('basic_blocks')
return self._basic_blocks
def _compute_bb_succ(self):
self._require('basic_blocks')
bb_succs = {}
for bb in self._bb_heads:
bb_succs[bb] = self.succ[self._bb_tails[bb]]
return bb_succs
def _compute_bb_pred(self):
self._require('basic_blocks')
bb_preds = {}
for bb in self._bb_heads:
preds_of_bb = self.pred[bb]
bb_preds[bb] = SmallSet(self._basic_blocks[p][0] for p in preds_of_bb)
return bb_preds
def nodes_in_bb(self, bb):
'''Return an iterator over all node in basic block 'bb.'''
node = bb
while True:
yield node
succs = self.succ[node]
if not succs:
return
node = succs[0]
if node in self._bb_heads:
return
def _compute_use_all(self):
'''Compute which variables have been defined.
A variable is defined at node n, if there is a path to n which
passes through a definition, but not through a subsequent deletion.
'''
self._require('bb_heads')
self._require('bb_succ')
self._require('bb_pred')
use_all = {}
def defined_in_block(bb):
defined = defined_at_start[bb].copy()
for node in self.nodes_in_bb(bb):
if node in self.definitions:
var = self.definitions[node]
defined.add(var)
if node in self.deletions:
var = self.deletions[node]
defined.discard(var)
if node in self.use_all_nodes:
use_all[node] = frozenset(defined)
return defined
defined_at_start = {}
work_set = set()
for bb in self._bb_heads:
if not self._bb_pred[bb]:
work_set.add(bb)
defined_at_start[bb] = set()
work_list = list(work_set)
while work_list:
bb = work_list.pop()
work_set.remove(bb)
defined_at_bb_end = defined_in_block(bb)
for succ in self._bb_succ[bb]:
if succ not in defined_at_start:
defined_at_start[succ] = set()
elif defined_at_start[succ] >= defined_at_bb_end:
continue
defined_at_start[succ].update(defined_at_bb_end)
if succ not in work_set:
work_list.append(succ)
work_set.add(succ)
return use_all
def _compute_liveness(self):
'''Compute liveness of all variables in this flow-graph.
Return a mapping of basic blocks to the set of variables
that are live at the start of that basic block.
See http://en.wikipedia.org/wiki/Live_variable_analysis.'''
self._require('bb_pred')
self._require('use_all')
def gen_and_kill_for_block(bb):
gen = set()
kill = set()
for node in reversed(list(self.nodes_in_bb(bb))):
if node in self.uses:
var = self.uses[node]
gen.add(var)
kill.discard(var)
if node in self.deletions:
var = self.deletions[node]
gen.add(var)
kill.discard(var)
if node in self.definitions:
var = self.definitions[node]
gen.discard(var)
kill.add(var)
if node in self._use_all:
for var in self._use_all[node]:
gen.add(var)
kill.discard(var)
return gen, kill
def liveness_for_block(bb, live_out):
return gens[bb].union(live_out.difference(kills[bb]))
live_at_end = {}
live_at_start = {}
gens = {}
kills = {}
work_set = set()
#Initialise
for bb in self._bb_heads:
gens[bb], kills[bb] = gen_and_kill_for_block(bb)
live_at_end[bb] = set()
live_at_start[bb] = set()
work_set.add(bb)
#Find fixed point
while work_set:
bb = work_set.pop()
live_in = liveness_for_block(bb, live_at_end[bb])
if live_in != live_at_start[bb]:
assert len(live_in) > len(live_at_start[bb])
live_at_start[bb] = live_in
for pred in self._bb_pred[bb]:
work_set.add(pred)
live_at_end[pred] = live_at_end[pred].union(live_in)
return live_at_start
def delete_unreachable_nodes(self):
self._require("reachable")
unreachable = [u for u in self.all_nodes if u not in self._reachable]
if not unreachable:
return
for mapping in (self.definitions, self.deletions, self.uses):
for u in unreachable:
if u in mapping:
del mapping[u]
for u in unreachable:
self.use_all_nodes.discard(u)
self.remove_node(u)
#Make sure we retain the order of all_nodes.
self.all_nodes = [r for r in self.all_nodes if r in self._reachable]
self.clear_computed()
def dominated_by(self, node):
self._require('idoms')
assert node in self, str(node) + " is not in graph"
dominated = set([node])
todo = set(self.succ[node])
while todo:
n = todo.pop()
if n in dominated:
continue
#Unreachable nodes will not be in self._idoms
if n in self._idoms and self._idoms[n] in dominated:
dominated.add(n)
todo.update(self.succ[n])
return dominated
def strictly_dominates(self, pre, post):
self._require('idoms')
while post in self._idoms:
post = self._idoms[post]
if pre == post:
return True
return False
def reaches_while_dominated(self, pre, post, control):
''' Holds if `pre` reaches `post` while remaining in the
region dominated by `control`.'''
self._require('dominance_frontier')
dominance_frontier = self._dominance_frontier[control]
todo = { pre }
reached = set()
while todo:
node = todo.pop()
if node in dominance_frontier:
continue
if node == post:
return True
if node in reached:
continue
reached.add(node)
todo.update(self.succ[node])
return False
def split(self, splits):
#We expect the following to be true (we assert it later):
#top dominates heads for all splits.
# Key class for (partially) ordering node by inverse dominance
class DominanceKey(object):
def __init__(this, node):
this.node = node
def __lt__(this, other):
return self.strictly_dominates(other.node, this.node)
splits.sort(key=lambda arg: DominanceKey(arg[0]))
for top, heads in splits:
self.single_split(top, heads)
def single_split(self, top, heads):
'''Splits the flow-graph from the branches. All code that succeeds each head
becomes unique to that head, limited to those nodes that are strictly dominated by top,
excluding exit nodes.
'''
assert top in self, "top " + str(top) + " is not in graph"
strictly_dominated_by_top = self.dominated_by(top)
strictly_dominated_by_top.remove(top)
for head in heads:
assert head in self, "head " + str(head) + " is not in graph"
assert head in strictly_dominated_by_top, str(head) + " is not dominated by " + str(top)
def successors_within_region(start, region):
#Find all nodes in region, that are reached from start (without leaving region)
nodes = set([start])
todo = set(self.succ[start])
while todo:
s = todo.pop()
if s not in nodes and s in region:
nodes.add(s)
todo.update(self.succ[s])
return nodes
subgraphs = [ (head, successors_within_region(head, strictly_dominated_by_top)) for head in heads ]
#Copy the two subgraphs
head_copies = []
branch_copies = []
for head, branch in subgraphs:
head_copy, branch_copy = self._copy_subgraph(head, branch, True)
head_copies.append(head_copy)
branch_copies.append(branch_copy)
#The original will be deleted by `delete_unreachable_nodes()`
#Make sure we retain the order of all_nodes.
self.all_nodes = [n for n in self.all_nodes if n in self.succ]
#All computed values are now invalid.
self.clear_computed()
self.delete_unreachable_nodes()
return head_copies, branch_copies
def _copy_subgraph(self, entry, to_copy, remove_links):
copies = {}
assert entry in to_copy, repr(entry) + " is not in sub-graph " + str(to_copy)
for node in to_copy:
copy = node.copy()
copies[node] = copy
self.add_node(copy)
ann = self.node_annotations.get(node)
self.annotate_node(copy, ann)
if node == entry:
res = copy
for mapping in (self.definitions, self.deletions, self.uses):
if node in mapping:
mapping[copy] = mapping[node]
if node in self.use_all_nodes:
self.use_all_nodes.add(copy)
for node in to_copy:
for s in self.succ[node]:
ann = self.edge_annotations.get((node,s))
if s in to_copy:
self.add_edge(copies[node], copies[s])
self.annotate_edge(copies[node], copies[s], ann)
else:
self.add_edge(copies[node], s)
self.annotate_edge(copies[node], s, ann)
if remove_links:
predecessors_to_remove = set()
for p in self.pred[entry]:
ann = self.edge_annotations.get((p, entry))
if p not in to_copy:
self.add_edge(p, copies[entry])
self.annotate_edge(p, copies[entry], ann)
predecessors_to_remove.add(p)
for p in predecessors_to_remove:
self.remove_edge(p, entry)
return res, set(copies.values())
def unroll(self, head, bodystart):
body = self.dominated_by(bodystart)
entries = [p for p in self.pred[head] if p not in body]
bodystart2, _ = self._copy_subgraph(bodystart, body, False)
prehead = head.copy()
self.add_node(prehead)
ann = self.node_annotations.get(head)
self.annotate_node(prehead, ann)
for s in self.succ[head]:
if s is not bodystart:
self.add_edge(prehead, s)
ann = self.edge_annotations.get((head, s))
self.annotate_edge(prehead, s, ann)
self.add_edge(prehead, bodystart2)
ann = self.edge_annotations.get((head, bodystart))
self.annotate_edge(prehead, bodystart2, ann)
for p in entries:
ann = self.edge_annotations.get((p, head))
self.remove_edge(p, head)
self.add_edge(p, prehead)
self.annotate_edge(p, prehead, ann)
self.clear_computed()
self.delete_unreachable_nodes()
class SSA_Var(object):
'A single static assignment variable'
__slots__ = [ 'variable', 'node' ]
def __init__(self, variable, node):
self.variable = variable
self.node = node
def __repr__(self):
return 'SSA_Var(%r, %r)' % (self.variable.id, self.node)
def _reverse_map(mapping):
'Reverse a mapping of keys -> values to value->set(keys)'
inv_map = {}
for k, v in mapping.items():
if v not in inv_map:
inv_map[v] = SmallSet()
inv_map[v].add(k)
return inv_map