forked from mono/mono
-
Notifications
You must be signed in to change notification settings - Fork 0
/
reclaim.c
1061 lines (968 loc) · 28.1 KB
/
reclaim.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
* Copyright (c) 1991-1996 by Xerox Corporation. All rights reserved.
* Copyright (c) 1996-1999 by Silicon Graphics. All rights reserved.
* Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
* OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program
* for any purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is granted,
* provided the above notices are retained, and a notice that the code was
* modified is included with the above copyright notice.
*/
#include <stdio.h>
#include "private/gc_priv.h"
signed_word GC_mem_found = 0;
/* Number of words of memory reclaimed */
#if defined(PARALLEL_MARK) || defined(THREAD_LOCAL_ALLOC)
word GC_fl_builder_count = 0;
/* Number of threads currently building free lists without */
/* holding GC lock. It is not safe to collect if this is */
/* nonzero. */
#endif /* PARALLEL_MARK */
/* We defer printing of leaked objects until we're done with the GC */
/* cycle, since the routine for printing objects needs to run outside */
/* the collector, e.g. without the allocation lock. */
#define MAX_LEAKED 40
ptr_t GC_leaked[MAX_LEAKED];
unsigned GC_n_leaked = 0;
GC_bool GC_have_errors = FALSE;
void GC_add_leaked(leaked)
ptr_t leaked;
{
if (GC_n_leaked < MAX_LEAKED) {
GC_have_errors = TRUE;
GC_leaked[GC_n_leaked++] = leaked;
/* Make sure it's not reclaimed this cycle */
GC_set_mark_bit(leaked);
}
}
static GC_bool printing_errors = FALSE;
/* Print all objects on the list after printing any smashed objs. */
/* Clear both lists. */
void GC_print_all_errors ()
{
unsigned i;
LOCK();
if (printing_errors) {
UNLOCK();
return;
}
printing_errors = TRUE;
UNLOCK();
if (GC_debugging_started) GC_print_all_smashed();
for (i = 0; i < GC_n_leaked; ++i) {
ptr_t p = GC_leaked[i];
if (HDR(p) -> hb_obj_kind == PTRFREE) {
GC_err_printf0("Leaked atomic object at ");
} else {
GC_err_printf0("Leaked composite object at ");
}
GC_print_heap_obj(p);
GC_err_printf0("\n");
GC_free(p);
GC_leaked[i] = 0;
}
GC_n_leaked = 0;
printing_errors = FALSE;
}
# define FOUND_FREE(hblk, word_no) \
{ \
GC_add_leaked((ptr_t)hblk + WORDS_TO_BYTES(word_no)); \
}
/*
* reclaim phase
*
*/
/*
* Test whether a block is completely empty, i.e. contains no marked
* objects. This does not require the block to be in physical
* memory.
*/
GC_bool GC_block_empty(hhdr)
register hdr * hhdr;
{
/* We treat hb_marks as an array of words here, even if it is */
/* actually an array of bytes. Since we only check for zero, there */
/* are no endian-ness issues. */
register word *p = (word *)(&(hhdr -> hb_marks[0]));
register word * plim =
(word *)(&(hhdr -> hb_marks[MARK_BITS_SZ]));
while (p < plim) {
if (*p++) return(FALSE);
}
return(TRUE);
}
/* The following functions sometimes return a DONT_KNOW value. */
#define DONT_KNOW 2
#ifdef SMALL_CONFIG
# define GC_block_nearly_full1(hhdr, pat1) DONT_KNOW
# define GC_block_nearly_full3(hhdr, pat1, pat2) DONT_KNOW
# define GC_block_nearly_full(hhdr) DONT_KNOW
#endif
#if !defined(SMALL_CONFIG) && defined(USE_MARK_BYTES)
# define GC_block_nearly_full1(hhdr, pat1) GC_block_nearly_full(hhdr)
# define GC_block_nearly_full3(hhdr, pat1, pat2) GC_block_nearly_full(hhdr)
GC_bool GC_block_nearly_full(hhdr)
register hdr * hhdr;
{
/* We again treat hb_marks as an array of words, even though it */
/* isn't. We first sum up all the words, resulting in a word */
/* containing 4 or 8 separate partial sums. */
/* We then sum the bytes in the word of partial sums. */
/* This is still endian independant. This fails if the partial */
/* sums can overflow. */
# if (BYTES_TO_WORDS(MARK_BITS_SZ)) >= 256
--> potential overflow; fix the code
# endif
register word *p = (word *)(&(hhdr -> hb_marks[0]));
register word * plim =
(word *)(&(hhdr -> hb_marks[MARK_BITS_SZ]));
word sum_vector = 0;
unsigned sum;
while (p < plim) {
sum_vector += *p;
++p;
}
sum = 0;
while (sum_vector > 0) {
sum += sum_vector & 0xff;
sum_vector >>= 8;
}
return (sum > BYTES_TO_WORDS(7*HBLKSIZE/8)/(hhdr -> hb_sz));
}
#endif /* USE_MARK_BYTES */
#if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
/*
* Test whether nearly all of the mark words consist of the same
* repeating pattern.
*/
#define FULL_THRESHOLD (MARK_BITS_SZ/16)
GC_bool GC_block_nearly_full1(hhdr, pat1)
hdr *hhdr;
word pat1;
{
unsigned i;
unsigned misses = 0;
GC_ASSERT((MARK_BITS_SZ & 1) == 0);
for (i = 0; i < MARK_BITS_SZ; ++i) {
if ((hhdr -> hb_marks[i] | ~pat1) != ONES) {
if (++misses > FULL_THRESHOLD) return FALSE;
}
}
return TRUE;
}
/*
* Test whether the same repeating 3 word pattern occurs in nearly
* all the mark bit slots.
* This is used as a heuristic, so we're a bit sloppy and ignore
* the last one or two words.
*/
GC_bool GC_block_nearly_full3(hhdr, pat1, pat2, pat3)
hdr *hhdr;
word pat1, pat2, pat3;
{
unsigned i;
unsigned misses = 0;
if (MARK_BITS_SZ < 4) {
return DONT_KNOW;
}
for (i = 0; i < MARK_BITS_SZ - 2; i += 3) {
if ((hhdr -> hb_marks[i] | ~pat1) != ONES) {
if (++misses > FULL_THRESHOLD) return FALSE;
}
if ((hhdr -> hb_marks[i+1] | ~pat2) != ONES) {
if (++misses > FULL_THRESHOLD) return FALSE;
}
if ((hhdr -> hb_marks[i+2] | ~pat3) != ONES) {
if (++misses > FULL_THRESHOLD) return FALSE;
}
}
return TRUE;
}
/* Check whether a small object block is nearly full by looking at only */
/* the mark bits. */
/* We manually precomputed the mark bit patterns that need to be */
/* checked for, and we give up on the ones that are unlikely to occur, */
/* or have period > 3. */
/* This would be a lot easier with a mark bit per object instead of per */
/* word, but that would rewuire computing object numbers in the mark */
/* loop, which would require different data structures ... */
GC_bool GC_block_nearly_full(hhdr)
hdr *hhdr;
{
int sz = hhdr -> hb_sz;
# if CPP_WORDSZ != 32 && CPP_WORDSZ != 64
return DONT_KNOW; /* Shouldn't be used in any standard config. */
# endif
# if CPP_WORDSZ == 32
switch(sz) {
case 1:
return GC_block_nearly_full1(hhdr, 0xffffffffl);
case 2:
return GC_block_nearly_full1(hhdr, 0x55555555l);
case 4:
return GC_block_nearly_full1(hhdr, 0x11111111l);
case 6:
return GC_block_nearly_full3(hhdr, 0x41041041l,
0x10410410l,
0x04104104l);
case 8:
return GC_block_nearly_full1(hhdr, 0x01010101l);
case 12:
return GC_block_nearly_full3(hhdr, 0x01001001l,
0x10010010l,
0x00100100l);
case 16:
return GC_block_nearly_full1(hhdr, 0x00010001l);
case 32:
return GC_block_nearly_full1(hhdr, 0x00000001l);
default:
return DONT_KNOW;
}
# endif
# if CPP_WORDSZ == 64
switch(sz) {
case 1:
return GC_block_nearly_full1(hhdr, 0xffffffffffffffffl);
case 2:
return GC_block_nearly_full1(hhdr, 0x5555555555555555l);
case 4:
return GC_block_nearly_full1(hhdr, 0x1111111111111111l);
case 6:
return GC_block_nearly_full3(hhdr, 0x1041041041041041l,
0x4104104104104104l,
0x0410410410410410l);
case 8:
return GC_block_nearly_full1(hhdr, 0x0101010101010101l);
case 12:
return GC_block_nearly_full3(hhdr, 0x1001001001001001l,
0x0100100100100100l,
0x0010010010010010l);
case 16:
return GC_block_nearly_full1(hhdr, 0x0001000100010001l);
case 32:
return GC_block_nearly_full1(hhdr, 0x0000000100000001l);
default:
return DONT_KNOW;
}
# endif
}
#endif /* !SMALL_CONFIG && !USE_MARK_BYTES */
/* We keep track of reclaimed memory if we are either asked to, or */
/* we are using the parallel marker. In the latter case, we assume */
/* that most allocation goes through GC_malloc_many for scalability. */
/* GC_malloc_many needs the count anyway. */
# if defined(GATHERSTATS) || defined(PARALLEL_MARK)
# define INCR_WORDS(sz) n_words_found += (sz)
# define COUNT_PARAM , count
# define COUNT_ARG , count
# define COUNT_DECL signed_word * count;
# define NWORDS_DECL signed_word n_words_found = 0;
# define COUNT_UPDATE *count += n_words_found;
# define MEM_FOUND_ADDR , &GC_mem_found
# else
# define INCR_WORDS(sz)
# define COUNT_PARAM
# define COUNT_ARG
# define COUNT_DECL
# define NWORDS_DECL
# define COUNT_UPDATE
# define MEM_FOUND_ADDR
# endif
/*
* Restore unmarked small objects in h of size sz to the object
* free list. Returns the new list.
* Clears unmarked objects.
*/
/*ARGSUSED*/
ptr_t GC_reclaim_clear(hbp, hhdr, sz, list COUNT_PARAM)
register struct hblk *hbp; /* ptr to current heap block */
register hdr * hhdr;
register ptr_t list;
register word sz;
COUNT_DECL
{
register int word_no;
register word *p, *q, *plim;
NWORDS_DECL
GC_ASSERT(hhdr == GC_find_header((ptr_t)hbp));
p = (word *)(hbp->hb_body);
word_no = 0;
plim = (word *)((((word)hbp) + HBLKSIZE)
- WORDS_TO_BYTES(sz));
/* go through all words in block */
while( p <= plim ) {
if( mark_bit_from_hdr(hhdr, word_no) ) {
p += sz;
} else {
INCR_WORDS(sz);
/* object is available - put on list */
obj_link(p) = list;
list = ((ptr_t)p);
/* Clear object, advance p to next object in the process */
q = p + sz;
# ifdef USE_MARK_BYTES
GC_ASSERT(!(sz & 1)
&& !((word)p & (2 * sizeof(word) - 1)));
p[1] = 0;
p += 2;
while (p < q) {
CLEAR_DOUBLE(p);
p += 2;
}
# else
p++; /* Skip link field */
while (p < q) {
*p++ = 0;
}
# endif
}
word_no += sz;
}
COUNT_UPDATE
return(list);
}
#if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
/*
* A special case for 2 word composite objects (e.g. cons cells):
*/
/*ARGSUSED*/
ptr_t GC_reclaim_clear2(hbp, hhdr, list COUNT_PARAM)
register struct hblk *hbp; /* ptr to current heap block */
hdr * hhdr;
register ptr_t list;
COUNT_DECL
{
register word * mark_word_addr = &(hhdr->hb_marks[0]);
register word *p, *plim;
register word mark_word;
register int i;
NWORDS_DECL
# define DO_OBJ(start_displ) \
if (!(mark_word & ((word)1 << start_displ))) { \
p[start_displ] = (word)list; \
list = (ptr_t)(p+start_displ); \
p[start_displ+1] = 0; \
INCR_WORDS(2); \
}
p = (word *)(hbp->hb_body);
plim = (word *)(((word)hbp) + HBLKSIZE);
/* go through all words in block */
while( p < plim ) {
mark_word = *mark_word_addr++;
for (i = 0; i < WORDSZ; i += 8) {
DO_OBJ(0);
DO_OBJ(2);
DO_OBJ(4);
DO_OBJ(6);
p += 8;
mark_word >>= 8;
}
}
COUNT_UPDATE
return(list);
# undef DO_OBJ
}
/*
* Another special case for 4 word composite objects:
*/
/*ARGSUSED*/
ptr_t GC_reclaim_clear4(hbp, hhdr, list COUNT_PARAM)
register struct hblk *hbp; /* ptr to current heap block */
hdr * hhdr;
register ptr_t list;
COUNT_DECL
{
register word * mark_word_addr = &(hhdr->hb_marks[0]);
register word *p, *plim;
register word mark_word;
NWORDS_DECL
# define DO_OBJ(start_displ) \
if (!(mark_word & ((word)1 << start_displ))) { \
p[start_displ] = (word)list; \
list = (ptr_t)(p+start_displ); \
p[start_displ+1] = 0; \
CLEAR_DOUBLE(p + start_displ + 2); \
INCR_WORDS(4); \
}
p = (word *)(hbp->hb_body);
plim = (word *)(((word)hbp) + HBLKSIZE);
/* go through all words in block */
while( p < plim ) {
mark_word = *mark_word_addr++;
DO_OBJ(0);
DO_OBJ(4);
DO_OBJ(8);
DO_OBJ(12);
DO_OBJ(16);
DO_OBJ(20);
DO_OBJ(24);
DO_OBJ(28);
# if CPP_WORDSZ == 64
DO_OBJ(32);
DO_OBJ(36);
DO_OBJ(40);
DO_OBJ(44);
DO_OBJ(48);
DO_OBJ(52);
DO_OBJ(56);
DO_OBJ(60);
# endif
p += WORDSZ;
}
COUNT_UPDATE
return(list);
# undef DO_OBJ
}
#endif /* !SMALL_CONFIG && !USE_MARK_BYTES */
/* The same thing, but don't clear objects: */
/*ARGSUSED*/
ptr_t GC_reclaim_uninit(hbp, hhdr, sz, list COUNT_PARAM)
register struct hblk *hbp; /* ptr to current heap block */
register hdr * hhdr;
register ptr_t list;
register word sz;
COUNT_DECL
{
register int word_no = 0;
register word *p, *plim;
NWORDS_DECL
p = (word *)(hbp->hb_body);
plim = (word *)((((word)hbp) + HBLKSIZE)
- WORDS_TO_BYTES(sz));
/* go through all words in block */
while( p <= plim ) {
if( !mark_bit_from_hdr(hhdr, word_no) ) {
INCR_WORDS(sz);
/* object is available - put on list */
obj_link(p) = list;
list = ((ptr_t)p);
}
p += sz;
word_no += sz;
}
COUNT_UPDATE
return(list);
}
/* Don't really reclaim objects, just check for unmarked ones: */
/*ARGSUSED*/
void GC_reclaim_check(hbp, hhdr, sz)
register struct hblk *hbp; /* ptr to current heap block */
register hdr * hhdr;
register word sz;
{
register int word_no = 0;
register word *p, *plim;
# ifdef GATHERSTATS
register int n_words_found = 0;
# endif
p = (word *)(hbp->hb_body);
plim = (word *)((((word)hbp) + HBLKSIZE)
- WORDS_TO_BYTES(sz));
/* go through all words in block */
while( p <= plim ) {
if( !mark_bit_from_hdr(hhdr, word_no) ) {
FOUND_FREE(hbp, word_no);
}
p += sz;
word_no += sz;
}
}
#if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
/*
* Another special case for 2 word atomic objects:
*/
/*ARGSUSED*/
ptr_t GC_reclaim_uninit2(hbp, hhdr, list COUNT_PARAM)
register struct hblk *hbp; /* ptr to current heap block */
hdr * hhdr;
register ptr_t list;
COUNT_DECL
{
register word * mark_word_addr = &(hhdr->hb_marks[0]);
register word *p, *plim;
register word mark_word;
register int i;
NWORDS_DECL
# define DO_OBJ(start_displ) \
if (!(mark_word & ((word)1 << start_displ))) { \
p[start_displ] = (word)list; \
list = (ptr_t)(p+start_displ); \
INCR_WORDS(2); \
}
p = (word *)(hbp->hb_body);
plim = (word *)(((word)hbp) + HBLKSIZE);
/* go through all words in block */
while( p < plim ) {
mark_word = *mark_word_addr++;
for (i = 0; i < WORDSZ; i += 8) {
DO_OBJ(0);
DO_OBJ(2);
DO_OBJ(4);
DO_OBJ(6);
p += 8;
mark_word >>= 8;
}
}
COUNT_UPDATE
return(list);
# undef DO_OBJ
}
/*
* Another special case for 4 word atomic objects:
*/
/*ARGSUSED*/
ptr_t GC_reclaim_uninit4(hbp, hhdr, list COUNT_PARAM)
register struct hblk *hbp; /* ptr to current heap block */
hdr * hhdr;
register ptr_t list;
COUNT_DECL
{
register word * mark_word_addr = &(hhdr->hb_marks[0]);
register word *p, *plim;
register word mark_word;
NWORDS_DECL
# define DO_OBJ(start_displ) \
if (!(mark_word & ((word)1 << start_displ))) { \
p[start_displ] = (word)list; \
list = (ptr_t)(p+start_displ); \
INCR_WORDS(4); \
}
p = (word *)(hbp->hb_body);
plim = (word *)(((word)hbp) + HBLKSIZE);
/* go through all words in block */
while( p < plim ) {
mark_word = *mark_word_addr++;
DO_OBJ(0);
DO_OBJ(4);
DO_OBJ(8);
DO_OBJ(12);
DO_OBJ(16);
DO_OBJ(20);
DO_OBJ(24);
DO_OBJ(28);
# if CPP_WORDSZ == 64
DO_OBJ(32);
DO_OBJ(36);
DO_OBJ(40);
DO_OBJ(44);
DO_OBJ(48);
DO_OBJ(52);
DO_OBJ(56);
DO_OBJ(60);
# endif
p += WORDSZ;
}
COUNT_UPDATE
return(list);
# undef DO_OBJ
}
/* Finally the one word case, which never requires any clearing: */
/*ARGSUSED*/
ptr_t GC_reclaim1(hbp, hhdr, list COUNT_PARAM)
register struct hblk *hbp; /* ptr to current heap block */
hdr * hhdr;
register ptr_t list;
COUNT_DECL
{
register word * mark_word_addr = &(hhdr->hb_marks[0]);
register word *p, *plim;
register word mark_word;
register int i;
NWORDS_DECL
# define DO_OBJ(start_displ) \
if (!(mark_word & ((word)1 << start_displ))) { \
p[start_displ] = (word)list; \
list = (ptr_t)(p+start_displ); \
INCR_WORDS(1); \
}
p = (word *)(hbp->hb_body);
plim = (word *)(((word)hbp) + HBLKSIZE);
/* go through all words in block */
while( p < plim ) {
mark_word = *mark_word_addr++;
for (i = 0; i < WORDSZ; i += 4) {
DO_OBJ(0);
DO_OBJ(1);
DO_OBJ(2);
DO_OBJ(3);
p += 4;
mark_word >>= 4;
}
}
COUNT_UPDATE
return(list);
# undef DO_OBJ
}
#endif /* !SMALL_CONFIG && !USE_MARK_BYTES */
/*
* Generic procedure to rebuild a free list in hbp.
* Also called directly from GC_malloc_many.
*/
ptr_t GC_reclaim_generic(hbp, hhdr, sz, init, list COUNT_PARAM)
struct hblk *hbp; /* ptr to current heap block */
hdr * hhdr;
GC_bool init;
ptr_t list;
word sz;
COUNT_DECL
{
ptr_t result = list;
GC_ASSERT(GC_find_header((ptr_t)hbp) == hhdr);
GC_remove_protection(hbp, 1, (hhdr)->hb_descr == 0 /* Pointer-free? */);
if (init) {
switch(sz) {
# if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
case 1:
/* We now issue the hint even if GC_nearly_full returned */
/* DONT_KNOW. */
result = GC_reclaim1(hbp, hhdr, list COUNT_ARG);
break;
case 2:
result = GC_reclaim_clear2(hbp, hhdr, list COUNT_ARG);
break;
case 4:
result = GC_reclaim_clear4(hbp, hhdr, list COUNT_ARG);
break;
# endif /* !SMALL_CONFIG && !USE_MARK_BYTES */
default:
result = GC_reclaim_clear(hbp, hhdr, sz, list COUNT_ARG);
break;
}
} else {
GC_ASSERT((hhdr)->hb_descr == 0 /* Pointer-free block */);
switch(sz) {
# if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
case 1:
result = GC_reclaim1(hbp, hhdr, list COUNT_ARG);
break;
case 2:
result = GC_reclaim_uninit2(hbp, hhdr, list COUNT_ARG);
break;
case 4:
result = GC_reclaim_uninit4(hbp, hhdr, list COUNT_ARG);
break;
# endif /* !SMALL_CONFIG && !USE_MARK_BYTES */
default:
result = GC_reclaim_uninit(hbp, hhdr, sz, list COUNT_ARG);
break;
}
}
if (IS_UNCOLLECTABLE(hhdr -> hb_obj_kind)) GC_set_hdr_marks(hhdr);
return result;
}
/*
* Restore unmarked small objects in the block pointed to by hbp
* to the appropriate object free list.
* If entirely empty blocks are to be completely deallocated, then
* caller should perform that check.
*/
void GC_reclaim_small_nonempty_block(hbp, report_if_found COUNT_PARAM)
register struct hblk *hbp; /* ptr to current heap block */
int report_if_found; /* Abort if a reclaimable object is found */
COUNT_DECL
{
hdr *hhdr = HDR(hbp);
word sz = hhdr -> hb_sz;
int kind = hhdr -> hb_obj_kind;
struct obj_kind * ok = &GC_obj_kinds[kind];
ptr_t * flh = &(ok -> ok_freelist[sz]);
hhdr -> hb_last_reclaimed = (unsigned short) GC_gc_no;
if (report_if_found) {
GC_reclaim_check(hbp, hhdr, sz);
} else {
*flh = GC_reclaim_generic(hbp, hhdr, sz,
(ok -> ok_init || GC_debugging_started),
*flh MEM_FOUND_ADDR);
}
}
/*
* Restore an unmarked large object or an entirely empty blocks of small objects
* to the heap block free list.
* Otherwise enqueue the block for later processing
* by GC_reclaim_small_nonempty_block.
* If report_if_found is TRUE, then process any block immediately, and
* simply report free objects; do not actually reclaim them.
*/
# if defined(__STDC__) || defined(__cplusplus)
void GC_reclaim_block(register struct hblk *hbp, word report_if_found)
# else
void GC_reclaim_block(hbp, report_if_found)
register struct hblk *hbp; /* ptr to current heap block */
word report_if_found; /* Abort if a reclaimable object is found */
# endif
{
register hdr * hhdr;
register word sz; /* size of objects in current block */
register struct obj_kind * ok;
struct hblk ** rlh;
hhdr = HDR(hbp);
sz = hhdr -> hb_sz;
ok = &GC_obj_kinds[hhdr -> hb_obj_kind];
if( sz > MAXOBJSZ ) { /* 1 big object */
if( !mark_bit_from_hdr(hhdr, 0) ) {
if (report_if_found) {
FOUND_FREE(hbp, 0);
} else {
word blocks = OBJ_SZ_TO_BLOCKS(sz);
if (blocks > 1) {
GC_large_allocd_bytes -= blocks * HBLKSIZE;
}
# ifdef GATHERSTATS
GC_mem_found += sz;
# endif
GC_freehblk(hbp);
}
}
} else {
GC_bool empty = GC_block_empty(hhdr);
if (report_if_found) {
GC_reclaim_small_nonempty_block(hbp, (int)report_if_found
MEM_FOUND_ADDR);
} else if (empty) {
# ifdef GATHERSTATS
GC_mem_found += BYTES_TO_WORDS(HBLKSIZE);
# endif
GC_freehblk(hbp);
} else if (TRUE != GC_block_nearly_full(hhdr)){
/* group of smaller objects, enqueue the real work */
rlh = &(ok -> ok_reclaim_list[sz]);
hhdr -> hb_next = *rlh;
*rlh = hbp;
} /* else not worth salvaging. */
/* We used to do the nearly_full check later, but we */
/* already have the right cache context here. Also */
/* doing it here avoids some silly lock contention in */
/* GC_malloc_many. */
}
}
#if !defined(NO_DEBUGGING)
/* Routines to gather and print heap block info */
/* intended for debugging. Otherwise should be called */
/* with lock. */
struct Print_stats
{
size_t number_of_blocks;
size_t total_bytes;
};
#ifdef USE_MARK_BYTES
/* Return the number of set mark bits in the given header */
int GC_n_set_marks(hhdr)
hdr * hhdr;
{
register int result = 0;
register int i;
for (i = 0; i < MARK_BITS_SZ; i++) {
result += hhdr -> hb_marks[i];
}
return(result);
}
#else
/* Number of set bits in a word. Not performance critical. */
static int set_bits(n)
word n;
{
register word m = n;
register int result = 0;
while (m > 0) {
if (m & 1) result++;
m >>= 1;
}
return(result);
}
/* Return the number of set mark bits in the given header */
int GC_n_set_marks(hhdr)
hdr * hhdr;
{
register int result = 0;
register int i;
for (i = 0; i < MARK_BITS_SZ; i++) {
result += set_bits(hhdr -> hb_marks[i]);
}
return(result);
}
#endif /* !USE_MARK_BYTES */
/*ARGSUSED*/
# if defined(__STDC__) || defined(__cplusplus)
void GC_print_block_descr(struct hblk *h, word dummy)
# else
void GC_print_block_descr(h, dummy)
struct hblk *h;
word dummy;
# endif
{
register hdr * hhdr = HDR(h);
register size_t bytes = WORDS_TO_BYTES(hhdr -> hb_sz);
struct Print_stats *ps;
GC_printf3("(%lu:%lu,%lu)", (unsigned long)(hhdr -> hb_obj_kind),
(unsigned long)bytes,
(unsigned long)(GC_n_set_marks(hhdr)));
bytes += HBLKSIZE-1;
bytes &= ~(HBLKSIZE-1);
ps = (struct Print_stats *)dummy;
ps->total_bytes += bytes;
ps->number_of_blocks++;
}
void GC_print_block_list()
{
struct Print_stats pstats;
GC_printf1("(kind(0=ptrfree,1=normal,2=unc.,%lu=stubborn):size_in_bytes, #_marks_set)\n", STUBBORN);
pstats.number_of_blocks = 0;
pstats.total_bytes = 0;
GC_apply_to_all_blocks(GC_print_block_descr, (word)&pstats);
GC_printf2("\nblocks = %lu, bytes = %lu\n",
(unsigned long)pstats.number_of_blocks,
(unsigned long)pstats.total_bytes);
}
#endif /* NO_DEBUGGING */
/*
* Clear all obj_link pointers in the list of free objects *flp.
* Clear *flp.
* This must be done before dropping a list of free gcj-style objects,
* since may otherwise end up with dangling "descriptor" pointers.
* It may help for other pointer-containing objects.
*/
void GC_clear_fl_links(flp)
ptr_t *flp;
{
ptr_t next = *flp;
while (0 != next) {
*flp = 0;
flp = &(obj_link(next));
next = *flp;
}
}
/*
* Perform GC_reclaim_block on the entire heap, after first clearing
* small object free lists (if we are not just looking for leaks).
*/
void GC_start_reclaim(report_if_found)
int report_if_found; /* Abort if a GC_reclaimable object is found */
{
int kind;
# if defined(PARALLEL_MARK) || defined(THREAD_LOCAL_ALLOC)
GC_ASSERT(0 == GC_fl_builder_count);
# endif
/* Clear reclaim- and free-lists */
for (kind = 0; kind < GC_n_kinds; kind++) {
ptr_t *fop;
ptr_t *lim;
struct hblk ** rlp;
struct hblk ** rlim;
struct hblk ** rlist = GC_obj_kinds[kind].ok_reclaim_list;
GC_bool should_clobber = (GC_obj_kinds[kind].ok_descriptor != 0);
if (rlist == 0) continue; /* This kind not used. */
if (!report_if_found) {
lim = &(GC_obj_kinds[kind].ok_freelist[MAXOBJSZ+1]);
for( fop = GC_obj_kinds[kind].ok_freelist; fop < lim; fop++ ) {
if (*fop != 0) {
if (should_clobber) {
GC_clear_fl_links(fop);
} else {
*fop = 0;
}
}
}
} /* otherwise free list objects are marked, */
/* and its safe to leave them */
rlim = rlist + MAXOBJSZ+1;
for( rlp = rlist; rlp < rlim; rlp++ ) {
*rlp = 0;
}
}
# ifdef PRINTBLOCKS
GC_printf0("GC_reclaim: current block sizes:\n");
GC_print_block_list();
# endif
/* Go through all heap blocks (in hblklist) and reclaim unmarked objects */
/* or enqueue the block for later processing. */
GC_apply_to_all_blocks(GC_reclaim_block, (word)report_if_found);
# ifdef EAGER_SWEEP
/* This is a very stupid thing to do. We make it possible anyway, */
/* so that you can convince yourself that it really is very stupid. */
GC_reclaim_all((GC_stop_func)0, FALSE);
# endif
# if defined(PARALLEL_MARK) || defined(THREAD_LOCAL_ALLOC)
GC_ASSERT(0 == GC_fl_builder_count);
# endif
}
/*
* Sweep blocks of the indicated object size and kind until either the
* appropriate free list is nonempty, or there are no more blocks to
* sweep.
*/
void GC_continue_reclaim(sz, kind)
word sz; /* words */
int kind;
{
register hdr * hhdr;
register struct hblk * hbp;
register struct obj_kind * ok = &(GC_obj_kinds[kind]);
struct hblk ** rlh = ok -> ok_reclaim_list;
ptr_t *flh = &(ok -> ok_freelist[sz]);
if (rlh == 0) return; /* No blocks of this kind. */
rlh += sz;
while ((hbp = *rlh) != 0) {
hhdr = HDR(hbp);