forked from PROoshio/CRPM-Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCRPM_Net.py
458 lines (401 loc) · 25.9 KB
/
CRPM_Net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import tensorflow as tf
import datetime
from tensorflow.python import debug as tf_debug
from utils import batch_yield,get_logger,full_image_yield,get_image
from image_split import image_yield,image_save,image_test,validation_yield
from net_utils import complex_cross_dilated_conv,crop_and_concat,max_pool,focal_loss,complex_cross_conv,complex_cross_deconv,complex_cross_fc
from collections import OrderedDict
from utils import *
from math import log
import os
from evaluator import evaluator
class CRPM_Net(object):
def __init__(self,batch_size,image_size,raw_path,num_label,regularation_rate,learning_rate,logger_path,
decay_rate,is_training,data_file,label_file,dev_data_file,clip,num_epochs,model_path):
'''
standard: training standard. 1: Cs-CNN 2: CRPM-Net
channel: Input data channel. 18: L,P,C-band complex_cross-value [C]. 27: L,P,C-band real-value [C].
filter_size: Base convlution kernel size
features_root: the channel number of first convolution layer
image_size: Sliding window size for CRPM-Net
stride: Slideing wondow size for CRPM-Net
'''
self.data_path = data_file
self.label_path = label_file
self.dev_data_path = dev_data_file
self.batch_size = batch_size
self.image_size = image_size
self.num_label = num_label
self.model_path = model_path
self.clip = clip
self.standard = 2
self.layers = 3
self.filter_size = 3
self.channels = 18
self.features_root = 12
self.num_epochs = num_epochs
self.learning_rate = learning_rate
self.decay_rate = decay_rate
self.is_training = is_training
self.stride=64
self.raw_path=raw_path
self.image_size=128
self.logger = get_logger(logger_path)
self.regularizer = tf.contrib.layers.l2_regularizer(0.0001)
def build_graph(self):
self.add_placeholder()
if self.standard == 1:
self.inference_Cs_CNN()
else:
self.inference_CRPM_Net()
if self.standard == 1:
self.loss_focal_loss()
self.train_step_Cs_CNN()
else:
self.loss()
self.train_step_CRPM_Net()
def add_placeholder(self):
self.input_real = tf.placeholder(tf.float32,shape=[None,None,None,self.channels],name="batch_real")
self.input_imag = tf.placeholder(tf.float32,shape=[None,None,None,self.channels],name="batch_imag")
self.decay_steps = tf.placeholder(tf.int32,name="decay_steps")
self.keep_prob = tf.placeholder(tf.float32, name="dropout_probability") # dropout for Cs-CNN
if self.standard==2:
self.keep_prob2 = tf.placeholder(tf.float32, name="dropout2_probability") # dropout for CRPM-Net
def down_conv(self):
#Cs-CNN inference
dw_h_convs = OrderedDict()
pools = OrderedDict()
x = [self.input_real,self.input_imag]
for layer in range(self.layers):
features = 2 ** layer * self.features_root
if layer == 0:
conv1_real,conv1_imag = complex_cross_conv(input_real=x[0],input_imag=x[1],
scope_name="down_conv_"+str(layer)+'/'+'conv1',
input_shape=[self.filter_size, self.filter_size, self.channels, features],
keep_prob=self.keep_prob,padding='VALID',regularizer=self.regularizer)
print([self.filter_size, self.filter_size, self.channels, features])
elif layer<self.layers-1:
conv1_real,conv1_imag = complex_cross_conv(input_real=x[0],input_imag=x[1],
scope_name="down_conv_"+str(layer)+'/'+'conv1',
input_shape=[self.filter_size, self.filter_size, features // 2, features],
keep_prob=self.keep_prob,padding='VALID',regularizer=self.regularizer)
print([self.filter_size, self.filter_size, features // 2, features])
else:
conv1_real,conv1_imag = complex_cross_conv(input_real=x[0],input_imag=x[1],
scope_name="down_conv_"+str(layer)+'/'+'conv1',
input_shape=[1,1, features // 2, features],
keep_prob=self.keep_prob,padding='VALID',regularizer=self.regularizer)
dw_h_convs[layer] = [conv1_real,conv1_imag]
if layer < self.layers - 1:
pools[layer] = [max_pool(dw_h_convs[layer][0], 2),max_pool(dw_h_convs[layer][1], 2)]
x = pools[layer]
return dw_h_convs
def down_atrous_conv(self):
#C-Dilated-CNN inference
self.input_raw_r = tf.placeholder(tf.float32,shape=[None,None,None,self.channels],name="batch_images_uncroped_r")
self.input_raw_i = tf.placeholder(tf.float32,shape=[None,None,None,self.channels],name="batch_images_uncroped_i")
dw_h_convs = OrderedDict()
pools = OrderedDict()
x = [self.input_raw_r,self.input_raw_i]
for layer in range(self.layers):
print(layer)
print(x[0].get_shape().as_list())
features = 2 ** layer * self.features_root
if layer == 0:
conv1_real,conv1_imag = complex_cross_conv(input_real=x[0],input_imag=x[1],
scope_name="down_conv_"+str(layer)+'/'+'conv1',
input_shape=[self.filter_size, self.filter_size, self.channels, features],
keep_prob=self.keep_prob,padding='SAME',regularizer=self.regularizer)
print([self.filter_size, self.filter_size, self.channels, features])
elif layer<self.layers-1:
conv1_real,conv1_imag = complex_cross_dilated_conv(input_real=x[0],input_imag=x[1],
scope_name="down_conv_"+str(layer)+'/'+'conv1',
input_shape=[self.filter_size, self.filter_size, features // 2, features],
keep_prob=self.keep_prob,regularizer=self.regularizer)
print([self.filter_size, self.filter_size, features // 2, features])
else:
conv1_real,conv1_imag = complex_cross_conv(input_real=x[0],input_imag=x[1],
scope_name="down_conv_"+str(layer)+'/'+'conv1',
input_shape=[1,1, features // 2, features],
keep_prob=self.keep_prob,padding='SAME',regularizer=self.regularizer)
dw_h_convs[layer] = [conv1_real,conv1_imag]
print([self.filter_size, self.filter_size, features, features])
print('\n')
if layer < self.layers - 1:
pools[layer] = [max_pool(dw_h_convs[layer][0], 2,1,"SAME"),max_pool(dw_h_convs[layer][1], 2,1,'SAME')]
x = pools[layer]
return dw_h_convs
def inference_Cs_CNN(self):
self.label = tf.placeholder(tf.int32,shape=[None],name="image_label")
self.up_h_convs = OrderedDict()
dw_h_convs = self.down_conv()
x = dw_h_convs[self.layers - 1]
flat_real = tf.reshape(x[0],[tf.shape(self.input_real)[0],-1])
flat_imag = tf.reshape(x[1],[tf.shape(self.input_real)[0],-1])
#input_real,input_imag,scope_name,input_shape,isActive
fc_real,fc_imag = complex_cross_fc(flat_real,flat_imag,'fc',[self.features_root*4,self.num_label],False)
logits_real = tf.expand_dims(fc_real,-1)
logits_imag = tf.expand_dims(fc_imag,-1)
self.real = logits_real
self.imag = logits_imag
self.mold = tf.sqrt(tf.add(tf.square(logits_real),tf.square(logits_imag)))
self.phase = tf.atan(tf.div(logits_imag,tf.add(logits_real,tf.constant(1e-8))))
self.logits = tf.concat((logits_real,logits_imag,self.mold,self.phase),-1)
#[batch_size,num_label]
with tf.variable_scope("mold_phase"):
self.weight = tf.get_variable(
name="weight_model",
shape=[4,1],
initializer=tf.contrib.layers.xavier_initializer(),
dtype=tf.float32)
self.logits = tf.reshape(tf.matmul(tf.reshape(self.logits,[-1,4]),self.weight),[tf.shape(self.input_real)[0],self.num_label])
self.out = tf.argmax(self.logits,1)
def inference_CRPM_Net(self):
self.label = tf.placeholder(tf.int32,shape=[None,None,None],name="image_label")
self.up_h_convs = OrderedDict()
deconv_dic = OrderedDict()
# Encoder network Cs-CNN
dw_h_convs = self.down_conv()
x = dw_h_convs[self.layers - 1]
flat_real = tf.reshape(x[0],[-1,self.features_root*4])
flat_imag = tf.reshape(x[1],[-1,self.features_root*4])
fc_real,fc_imag = complex_cross_fc(flat_real,flat_imag,'fc',[self.features_root*4,self.num_label],False)
heat_x = [tf.reshape(fc_real,[tf.shape(x[0])[0],tf.shape(x[0])[1],tf.shape(x[0])[2],self.num_label]),tf.reshape(fc_imag,[tf.shape(x[1])[0],tf.shape(x[1])[1],tf.shape(x[1])[2],self.num_label])]
#C-Dilated CNN
dw_h_convs_atrous = self.down_atrous_conv()
if self.is_training:
x_atrous = dw_h_convs_atrous[self.layers-1]
flat_real_atrous = tf.reshape(x_atrous[0],[-1,self.features_root*4])
flat_imag_atrous = tf.reshape(x_atrous[1],[-1,self.features_root*4])
fc_real_atrous,fc_imag_atrous = complex_cross_fc(flat_real_atrous,flat_imag_atrous,'fc',[self.features_root*4,self.num_label],False)
logits_real_atrous = tf.expand_dims(fc_real_atrous,-1)
logits_imag_atrous = tf.expand_dims(fc_imag_atrous,-1)
mold_atrous = tf.sqrt(tf.add(tf.square(logits_real_atrous),tf.square(logits_imag_atrous)))
phase_atrous = tf.atan(tf.div(logits_imag_atrous,tf.add(logits_real_atrous,tf.constant(1e-8))))
self.logits_atrous = tf.concat((logits_real_atrous,logits_imag_atrous,mold_atrous,phase_atrous),-1)
with tf.variable_scope("mold_phase"):
weight_atrous1 = tf.get_variable(
name="weight_model",
shape=[4,1],
initializer=tf.contrib.layers.xavier_initializer(),
dtype=tf.float32)
# Fusion of score map of C-Dilated CNN and training pixels
self.logits_atrous = tf.reshape(tf.matmul(tf.reshape(self.logits_atrous,[-1,4]),weight_atrous1),[tf.shape(x_atrous[0])[0],tf.shape(x_atrous[0])[1],tf.shape(x_atrous[0])[2],self.num_label])
self.label_dilate = tf.cast(tf.argmax(self.logits_atrous,3),tf.int32)
b_ = tf.scalar_mul(16, tf.ones_like(self.label, dtype=tf.int32))
self.weight_loss = tf.where(tf.equal(self.label,b_),tf.scalar_mul(0,tf.ones_like(self.label, dtype=tf.float32)),
tf.scalar_mul(1, tf.ones_like(self.label, dtype=tf.float32)))
self.label_new = tf.where(tf.equal(self.label,b_),self.label_dilate,self.label)
self.weight_loss = tf.where(tf.not_equal(self.label_new,self.label_dilate), tf.scalar_mul(1, tf.ones_like(self.label, dtype=tf.float32)),
self.weight_loss)
# Decoder network
for layer in range(self.layers-2,-1,-1):
features = 2 ** (layer + 1) * self.features_root
if layer==self.layers-2:
h_deconv_r,h_deconv_i = complex_cross_deconv(input_real=heat_x[0],input_imag=heat_x[1],
scope_name="up_conv_"+str(layer)+'/',
input_shape=[2, 2, features // 2, self.num_label])
else:
h_deconv_r,h_deconv_i = complex_cross_deconv(input_real=heat_x[0],input_imag=heat_x[1],
scope_name="up_conv_"+str(layer)+'/',
input_shape=[2, 2, features // 2, features])
h_deconv_concat = [crop_and_concat(dw_h_convs[layer][0], h_deconv_r),crop_and_concat(dw_h_convs[layer][1], h_deconv_i)]
deconv_dic[layer] = h_deconv_concat
if layer==0:
x_dilate = dw_h_convs_atrous[self.layers-2]
h_deconv_concat = [crop_and_concat(h_deconv_concat[0], x_dilate[0]),crop_and_concat(h_deconv_concat[1], x_dilate[1])]
conv1_r,conv1_i = complex_cross_conv(input_real=h_deconv_concat[0],input_imag=h_deconv_concat[1],
scope_name="up_conv_"+str(layer)+'/'+'conv1',
input_shape=[self.filter_size, self.filter_size, features*2, features // 2],
keep_prob=self.keep_prob2,padding='SAME',regularizer=self.regularizer)
else:
conv1_r,conv1_i = complex_cross_conv(input_real=h_deconv_concat[0],input_imag=h_deconv_concat[1],
scope_name="up_conv_"+str(layer)+'/'+'conv1',
input_shape=[self.filter_size, self.filter_size, features, features // 2],
keep_prob=self.keep_prob2,padding='SAME',regularizer=self.regularizer)
heat_x[0],heat_x[1] = conv1_r,conv1_i;
self.up_h_convs[layer] = heat_x
conv_out_r,conv_out_i = complex_cross_conv(input_real=heat_x[0],input_imag=heat_x[1],
scope_name='output_map/conv1x1',
input_shape=[1, 1, self.features_root, self.num_label],
keep_prob=tf.constant(1.0),padding='VALID',regularizer=self.regularizer)
logits_real = tf.expand_dims(conv_out_r,-1)
logits_imag = tf.expand_dims(conv_out_i,-1)
self.mold = tf.sqrt(tf.add(tf.square(logits_real),tf.square(logits_real)))
self.phase = tf.atan(tf.div(logits_imag,tf.add(logits_real,tf.constant(1e-8))))
self.logits = tf.concat((logits_real,logits_imag,self.mold,self.phase),-1)
#[batch_size,num_label]
with tf.variable_scope("mold_phase_U_Net"):
self.weight = tf.get_variable(
name="weight_model",
shape=[4,1],
initializer=tf.contrib.layers.xavier_initializer(),
dtype=tf.float32)
self.logits = tf.reshape(tf.matmul(tf.reshape(self.logits,[-1,4]),self.weight),[tf.shape(self.input_real)[0],tf.shape(conv_out_r)[1],tf.shape(conv_out_r)[2],self.num_label])
self.out = tf.argmax(self.logits,3)
def loss_focal_loss(self):
labels_one_hot = tf.one_hot(self.label,16)
with tf.variable_scope("loss"):
self.loss = focal_loss(prediction_tensor=self.logits,target_tensor=labels_one_hot)
self.loss = tf.reduce_mean(self.loss)+tf.add_n(tf.get_collection('losses'))
def loss(self):
with tf.variable_scope("loss"):
annotation = tf.expand_dims(self.label,-1,name="annotation")
self.loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits,
labels=self.label)
self.loss = tf.reduce_mean(self.loss)+tf.add_n(tf.get_collection('losses'))
def train_step_CRPM_Net(self):
self.global_step = tf.Variable(0,name="global_step",trainable=False)
var_up = tf.trainable_variables()[17:]
print(len(var_up))
variables_names = [v.name for v in tf.trainable_variables()[17:]]
print(variables_names)
optim = tf.train.AdamOptimizer(learning_rate=tf.train.exponential_decay(self.learning_rate,self.global_step,self.decay_steps,self.decay_rate,staircase=False))
grads_and_vars = optim.compute_gradients(self.loss,var_up)
grads_and_vars_clip = []
for g,v in grads_and_vars:
print(v.name)
print(g)
grads_and_vars_clip.append([tf.clip_by_value(g, -self.clip, self.clip), v])
capped_grads_and_vars = []
for g_v in grads_and_vars_clip:
for var in var_up:
if g_v[1]==var:
print(g_v[1].name)
capped_grads_and_vars.append((g_v[0],g_v[1]))
self.train_op = optim.apply_gradients(capped_grads_and_vars, global_step=self.global_step)
def train_step_Cs_CNN(self):
self.global_step = tf.Variable(0,name="global_step",trainable=False)
optim = tf.train.AdamOptimizer(learning_rate=tf.train.exponential_decay(self.learning_rate,self.global_step,self.decay_steps,self.decay_rate,staircase=False))
grads_and_vars = optim.compute_gradients(self.loss)
grads_and_vars_clip = [[tf.clip_by_value(g, -self.clip, self.clip), v] for g, v in grads_and_vars]
self.train_op = optim.apply_gradients(grads_and_vars_clip, global_step=self.global_step)
def restore_step2(self,sess):
var_up = tf.trainable_variables()[:17]
saver = tf.train.Saver(var_up)
saver.restore(sess,ckpt_file)
print('step1 model restored...')
def model_restore(self):
#model_saver = tf.train.Saver(tf.global_variables())
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
variables_names = [v.name for v in tf.trainable_variables()]
print(variables_names)
saver.restore(sess,self.model_path)
print('model restored...')
#model_saver.save(sess,self.model_path,global_step=0)
return sess
def test(self,sess):
start_time = datetime.datetime.now()
img_r,img_i,lab = image_test(self.raw_path,self.label_path)
img_r_raw = image_add_border(img_r[0],[img_r[0].shape[0]+6,img_r[0].shape[1]+6])
img_i_raw = image_add_border(img_i[0],[img_i[0].shape[0]+6,img_i[0].shape[1]+6])
feed_dict={self.input_real:[img_r_raw],self.input_imag:[img_i_raw],self.input_raw_r:img_r,self.input_raw_i:img_i,self.label:lab,self.decay_steps:1,self.keep_prob:1.,self.keep_prob2:1.}
pred_label = sess.run(self.out, feed_dict=feed_dict)
print("image_size: "+str(pred_label.shape[1:]))
print("classification time: "+(str(datetime.datetime.now()-start_time)[5:])+' (s)')
print('classification image saving...')
pred_file = image_save(pred_label[0,...],pred_label.shape[1],pred_label.shape[2],"CRPM_Net",self.label_path,True)
evaluator(pred_file,self.label_path)
def test_dilate(self,sess):
img_r,img_i,lab = image_test(self.raw_path,self.label_path)
feed_dict={self.input_raw_r:img_r,self.input_raw_i:img_i,self.decay_steps:1,self.keep_prob:1.,self.keep_prob2:1.}
start_time = datetime.datetime.now()
[pred_label] = sess.run([self.label_dilate], feed_dict=feed_dict)
print(pred_label.shape)
image_save(pred_label[0,...],pred_label.shape[1],pred_label.shape[2],"dilated_pred",self.label_path,True)
print("Evaluating...")
print("%d s costed"%((datetime.datetime.now()-start_time).seconds))
def train(self):
model_saver = tf.train.Saver(tf.global_variables())
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
loss_lst,acc_lst,acc_cls_lst = [],[],[]
sess.run(tf.global_variables_initializer())
variables_names = [v.name for v in tf.trainable_variables()]
values = sess.run(variables_names)
for k,v in zip(variables_names,values):
print("Variable: ",k)
print("Shape: ",v.shape)
print(variables_names[:17])
if self.standard == 2:
self.restore_step2(sess)
for epoch in range(self.num_epochs):
global_step = sess.run(self.global_step)
loss,acc = self.run_one_epoch(sess,model_saver,epoch+1,global_step,0.75)#keep_prob
loss_lst.append(loss)
acc_lst.append(acc)
if epoch and epoch%100==0:
np.save('loss.npy',np.array(loss_lst))
np.save('acc.npy',np.array(acc_lst))
def run_one_epoch(self,sess,model_saver,epoch,global_step,keep_prob):
loss_total = []
accuracy = 0
print("global_step: %d"%global_step)
if epoch==1:
is_shuffle = False
else:
is_shuffle = True
print('****************epoch start****************')
data_real,data_imag = matReader(self.raw_path)
label = sio.loadmat(self.label_path)['clas1']
label_sample = np.load('sample.npy')
if self.standard==2:
batch_generator = image_yield(data_real,data_imag,label_sample,self.stride,self.image_size,self.batch_size,False)
else:
batch_generator = batch_yield(self.batch_size,self.data_path,is_shuffle,data_real,data_imag,label)
#batch_generator = batch_yield(self.batch_size,self.data_path,is_shuffle)
start_time = datetime.datetime.now()
for step,(batch_num,image_batch_real,image_batch_imag,label_batch) in enumerate(batch_generator,1):
if self.standard==2:
feed_dict={self.input_real:image_batch_real[0],self.input_raw_r:image_batch_real[1],
self.input_imag:image_batch_imag[0],self.input_raw_i:image_batch_imag[1],
self.label:label_batch,self.decay_steps:batch_num,self.keep_prob:keep_prob,
self.keep_prob2:keep_prob}
else:
feed_dict={self.input_real:image_batch_real,self.input_imag:image_batch_imag,self.label:label_batch,self.decay_steps:batch_num,self.keep_prob:keep_prob}
_,loss,pred_label,steps = sess.run([self.train_op,self.loss,self.out,self.global_step],feed_dict=feed_dict)
loss_total.append(loss)
if step%10==0:
print("%d / %d batch(s) processed in %dth epoch used %d sec and loss is %.4f" %(step,batch_num,epoch,(datetime.datetime.now()-start_time).seconds,loss))
start_time = datetime.datetime.now()
if step==batch_num:
self.logger.info("%s >> %d epoch(s), %d step(s)" %(datetime.datetime.now(),epoch,step))
if self.standard==2:
if epoch%5==0:
d_r,d_i,l= validation_yield1(data_real,data_imag,label_sample,self.image_size)
if self.standard==2:
feed_dict={self.input_real:d_r[0],self.input_raw_r:d_r[1],
self.input_imag:d_i[0],self.input_raw_i:d_i[1],
self.label:l,self.decay_steps:batch_num,
self.keep_prob:1.,self.keep_prob2:1.}
else:
feed_dict={self.input_real:d_r,self.input_imag:d_i,self.label:l,self.decay_steps:batch_num,self.keep_prob:1.}
loss1,pred_label,label_1 = sess.run([self.loss,self.out,self.label_new],feed_dict=feed_dict)
correct_predict = tf.equal(pred_label,label_1)
accuracy1 = sess.run(tf.reduce_mean(tf.cast(correct_predict,tf.float32)))
self.logger.info("**********train batch evaluation**********")
self.logger.info(">> %dth train_batch in %d epoch(s) / Accuracy: %.4f / Loss: %.4f" %(step,epoch,accuracy1,loss1))
for i in range(len(l)):
image_save(pred_label[i,...],l[i].shape[0],l[i].shape[0],"sample_out/image1"+str(i)+"_pred.jpg")
image_save(label_1[i,...],label_1[i].shape[0],label_1[i].shape[0],"sample_out/image1"+str(i)+"_corr.jpg")
#cv2.imwrite("image_1"+str(i)+"_real.jpg",image_batch[i,...])
elif epoch%1==0:
weight = sess.run([self.weight])
print(weight)
label_corr,loss,label_cls = self.test_pred(sess,100,self.dev_data_path)
accuracy = label_corr[0]/float(label_corr[1])
acc_cls = []
tag = ['grass: ','flax: ','potato: ','wheat: ','rapessed: ','beet: ','barley: ','peas: ','maize: ','bean: ','fruit: ','onion: ','oat: ','lucerne: ','building: ','road: ']
for i in range(16):
acc_cls.append(label_cls[i][0]/float(label_cls[i][1]))
print(tag[i]+"%4f"%(acc_cls[i]))
self.logger.info("**********validation evaluation**********")
self.logger.info("Validation >> %dth step in %d epoch(s) / Accuracy: %.4f / Loss: %.4f" %(step,epoch,accuracy,loss))
if step==batch_num and epoch%5==0:
model_saver.save(sess, self.model_path,global_step=epoch)
return np.mean(np.array(loss_total)),accuracy