-
Notifications
You must be signed in to change notification settings - Fork 490
/
Copy pathcollect_env.py
355 lines (277 loc) · 10.4 KB
/
collect_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
# Copyright (C) 2021-2025, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
"""Based on https://github.com/pytorch/pytorch/blob/master/torch/utils/collect_env.py
This script outputs relevant system environment info
Run it with `python collect_env.py`.
"""
from __future__ import absolute_import, division, print_function, unicode_literals
import locale
import os
import re
import subprocess
import sys
from collections import namedtuple
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
try:
import doctr
DOCTR_AVAILABLE = True
except (ImportError, NameError, AttributeError, OSError):
DOCTR_AVAILABLE = False
try:
import tensorflow as tf
TF_AVAILABLE = True
except (ImportError, NameError, AttributeError, OSError):
TF_AVAILABLE = False
try:
import torch
TORCH_AVAILABLE = True
except (ImportError, NameError, AttributeError, OSError):
TORCH_AVAILABLE = False
try:
import torchvision
TV_AVAILABLE = True
except (ImportError, NameError, AttributeError, OSError):
TV_AVAILABLE = False
try:
import cv2
CV2_AVAILABLE = True
except (ImportError, NameError, AttributeError, OSError):
CV2_AVAILABLE = False
PY3 = sys.version_info >= (3, 0)
# System Environment Information
SystemEnv = namedtuple(
"SystemEnv",
[
"doctr_version",
"tf_version",
"torch_version",
"torchvision_version",
"cv2_version",
"os",
"python_version",
"is_cuda_available_tf",
"is_cuda_available_torch",
"cuda_runtime_version",
"nvidia_driver_version",
"nvidia_gpu_models",
"cudnn_version",
],
)
def run(command):
"""Returns (return-code, stdout, stderr)"""
p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
output, err = p.communicate()
rc = p.returncode
if PY3:
enc = locale.getpreferredencoding()
output = output.decode(enc)
err = err.decode(enc)
return rc, output.strip(), err.strip()
def run_and_read_all(run_lambda, command):
"""Runs command using run_lambda; reads and returns entire output if rc is 0"""
rc, out, _ = run_lambda(command)
if rc != 0:
return None
return out
def run_and_parse_first_match(run_lambda, command, regex):
"""Runs command using run_lambda, returns the first regex match if it exists"""
rc, out, _ = run_lambda(command)
if rc != 0:
return None
match = re.search(regex, out)
if match is None:
return None
return match.group(1)
def get_nvidia_driver_version(run_lambda):
if get_platform() == "darwin":
cmd = "kextstat | grep -i cuda"
return run_and_parse_first_match(run_lambda, cmd, r"com[.]nvidia[.]CUDA [(](.*?)[)]")
smi = get_nvidia_smi()
return run_and_parse_first_match(run_lambda, smi, r"Driver Version: (.*?) ")
def get_gpu_info(run_lambda):
if get_platform() == "darwin":
if TF_AVAILABLE and any(tf.config.list_physical_devices("GPU")):
return tf.config.list_physical_devices("GPU")[0].name
return None
smi = get_nvidia_smi()
uuid_regex = re.compile(r" \(UUID: .+?\)")
rc, out, _ = run_lambda(smi + " -L")
if rc != 0:
return None
# Anonymize GPUs by removing their UUID
return re.sub(uuid_regex, "", out)
def get_running_cuda_version(run_lambda):
return run_and_parse_first_match(run_lambda, "nvcc --version", r"release .+ V(.*)")
def get_cudnn_version(run_lambda):
"""This will return a list of libcudnn.so; it's hard to tell which one is being used"""
if get_platform() == "win32":
cudnn_cmd = 'where /R "%CUDA_PATH%\\bin" cudnn*.dll'
elif get_platform() == "darwin":
# CUDA libraries and drivers can be found in /usr/local/cuda/. See
# https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#install
# https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installmac
# Use CUDNN_LIBRARY when cudnn library is installed elsewhere.
cudnn_cmd = "ls /usr/local/cuda/lib/libcudnn*"
else:
cudnn_cmd = 'ldconfig -p | grep libcudnn | rev | cut -d" " -f1 | rev'
rc, out, _ = run_lambda(cudnn_cmd)
# find will return 1 if there are permission errors or if not found
if len(out) == 0 or (rc != 1 and rc != 0):
lib = os.environ.get("CUDNN_LIBRARY")
if lib is not None and os.path.isfile(lib):
return os.path.realpath(lib)
return None
files = set()
for fn in out.split("\n"):
fn = os.path.realpath(fn) # eliminate symbolic links
if os.path.isfile(fn):
files.add(fn)
if not files:
return None
# Alphabetize the result because the order is non-deterministic otherwise
files = sorted(files)
if len(files) == 1:
return files[0]
result = "\n".join(files)
return "Probably one of the following:\n{}".format(result)
def get_nvidia_smi():
# Note: nvidia-smi is currently available only on Windows and Linux
smi = "nvidia-smi"
if get_platform() == "win32":
smi = '"C:\\Program Files\\NVIDIA Corporation\\NVSMI\\%s"' % smi
return smi
def get_platform():
if sys.platform.startswith("linux"):
return "linux"
elif sys.platform.startswith("win32"):
return "win32"
elif sys.platform.startswith("cygwin"):
return "cygwin"
elif sys.platform.startswith("darwin"):
return "darwin"
else:
return sys.platform
def get_mac_version(run_lambda):
return run_and_parse_first_match(run_lambda, "sw_vers -productVersion", r"(.*)")
def get_windows_version(run_lambda):
return run_and_read_all(run_lambda, "wmic os get Caption | findstr /v Caption")
def get_lsb_version(run_lambda):
return run_and_parse_first_match(run_lambda, "lsb_release -a", r"Description:\t(.*)")
def check_release_file(run_lambda):
return run_and_parse_first_match(run_lambda, "cat /etc/*-release", r'PRETTY_NAME="(.*)"')
def get_os(run_lambda):
platform = get_platform()
if platform == "win32" or platform == "cygwin":
return get_windows_version(run_lambda)
if platform == "darwin":
version = get_mac_version(run_lambda)
if version is None:
return None
return "Mac OSX {}".format(version)
if platform == "linux":
# Ubuntu/Debian based
desc = get_lsb_version(run_lambda)
if desc is not None:
return desc
# Try reading /etc/*-release
desc = check_release_file(run_lambda)
if desc is not None:
return desc
return platform
# Unknown platform
return platform
def get_env_info():
run_lambda = run
doctr_str = doctr.__version__ if DOCTR_AVAILABLE else "N/A"
if TF_AVAILABLE:
tf_str = tf.__version__
tf_cuda_available_str = any(tf.config.list_physical_devices("GPU"))
else:
tf_str = tf_cuda_available_str = "N/A"
if TORCH_AVAILABLE:
torch_str = torch.__version__
torch_cuda_available_str = torch.cuda.is_available()
else:
torch_str = torch_cuda_available_str = "N/A"
tv_str = torchvision.__version__ if TV_AVAILABLE else "N/A"
cv2_str = cv2.__version__ if CV2_AVAILABLE else "N/A"
return SystemEnv(
doctr_version=doctr_str,
tf_version=tf_str,
torch_version=torch_str,
torchvision_version=tv_str,
cv2_version=cv2_str,
python_version=".".join(map(str, sys.version_info[:3])),
is_cuda_available_tf=tf_cuda_available_str,
is_cuda_available_torch=torch_cuda_available_str,
cuda_runtime_version=get_running_cuda_version(run_lambda),
nvidia_gpu_models=get_gpu_info(run_lambda),
nvidia_driver_version=get_nvidia_driver_version(run_lambda),
cudnn_version=get_cudnn_version(run_lambda),
os=get_os(run_lambda),
)
env_info_fmt = """
DocTR version: {doctr_version}
TensorFlow version: {tf_version}
PyTorch version: {torch_version} (torchvision {torchvision_version})
OpenCV version: {cv2_version}
OS: {os}
Python version: {python_version}
Is CUDA available (TensorFlow): {is_cuda_available_tf}
Is CUDA available (PyTorch): {is_cuda_available_torch}
CUDA runtime version: {cuda_runtime_version}
GPU models and configuration: {nvidia_gpu_models}
Nvidia driver version: {nvidia_driver_version}
cuDNN version: {cudnn_version}
""".strip()
def pretty_str(envinfo):
def replace_nones(dct, replacement="Could not collect"):
for key in dct.keys():
if dct[key] is not None:
continue
dct[key] = replacement
return dct
def replace_bools(dct, true="Yes", false="No"):
for key in dct.keys():
if dct[key] is True:
dct[key] = true
elif dct[key] is False:
dct[key] = false
return dct
def maybe_start_on_next_line(string):
# If `string` is multiline, prepend a \n to it.
if string is not None and len(string.split("\n")) > 1:
return "\n{}\n".format(string)
return string
mutable_dict = envinfo._asdict()
# If nvidia_gpu_models is multiline, start on the next line
mutable_dict["nvidia_gpu_models"] = maybe_start_on_next_line(envinfo.nvidia_gpu_models)
# If the machine doesn't have CUDA, report some fields as 'No CUDA'
dynamic_cuda_fields = [
"cuda_runtime_version",
"nvidia_gpu_models",
"nvidia_driver_version",
]
all_cuda_fields = dynamic_cuda_fields + ["cudnn_version"]
all_dynamic_cuda_fields_missing = all(mutable_dict[field] is None for field in dynamic_cuda_fields)
if TF_AVAILABLE and not any(tf.config.list_physical_devices("GPU")) and all_dynamic_cuda_fields_missing:
for field in all_cuda_fields:
mutable_dict[field] = "No CUDA"
# Replace True with Yes, False with No
mutable_dict = replace_bools(mutable_dict)
# Replace all None objects with 'Could not collect'
mutable_dict = replace_nones(mutable_dict)
return env_info_fmt.format(**mutable_dict)
def get_pretty_env_info():
"""Collects environment information for debugging purposes
Returns:
str: environment information
"""
return pretty_str(get_env_info())
def main():
print("Collecting environment information...\n")
output = get_pretty_env_info()
print(output)
if __name__ == "__main__":
main()