-
Notifications
You must be signed in to change notification settings - Fork 490
/
Copy pathevaluate.py
233 lines (200 loc) · 9.85 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# Copyright (C) 2021-2025, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
import numpy as np
from tqdm import tqdm
from doctr import datasets
from doctr import transforms as T
from doctr.file_utils import is_tf_available
from doctr.models import ocr_predictor
from doctr.utils.geometry import extract_crops, extract_rcrops
from doctr.utils.metrics import LocalizationConfusion, OCRMetric, TextMatch
# Enable GPU growth if using TF
if is_tf_available():
import tensorflow as tf
gpu_devices = tf.config.list_physical_devices("GPU")
if any(gpu_devices):
tf.config.experimental.set_memory_growth(gpu_devices[0], True)
else:
import torch
def _pct(val):
return "N/A" if val is None else f"{val:.2%}"
def main(args):
if not args.rotation:
args.eval_straight = True
input_shape = (args.size, args.size)
# We define a transformation function which does transform the annotation
# to the required format for the Resize transformation
def _transform(img, target):
boxes = target["boxes"]
transformed_img, transformed_boxes = T.Resize(
input_shape, preserve_aspect_ratio=args.keep_ratio, symmetric_pad=args.symmetric_pad
)(img, boxes)
return transformed_img, {"boxes": transformed_boxes, "labels": target["labels"]}
predictor = ocr_predictor(
args.detection,
args.recognition,
pretrained=True,
reco_bs=args.batch_size,
preserve_aspect_ratio=False, # we handle the transformation directly in the dataset so this is set to False
symmetric_pad=False, # we handle the transformation directly in the dataset so this is set to False
assume_straight_pages=not args.rotation,
)
if args.img_folder and args.label_file:
testset = datasets.OCRDataset(
img_folder=args.img_folder,
label_file=args.label_file,
sample_transforms=_transform,
)
sets = [testset]
else:
train_set = datasets.__dict__[args.dataset](
train=True,
download=True,
use_polygons=not args.eval_straight,
sample_transforms=_transform,
)
val_set = datasets.__dict__[args.dataset](
train=False,
download=True,
use_polygons=not args.eval_straight,
sample_transforms=_transform,
)
sets = [train_set, val_set]
reco_metric = TextMatch()
det_metric = LocalizationConfusion(iou_thresh=args.iou, use_polygons=not args.eval_straight)
e2e_metric = OCRMetric(iou_thresh=args.iou, use_polygons=not args.eval_straight)
sample_idx = 0
extraction_fn = extract_crops if args.eval_straight else extract_rcrops
for dataset in sets:
for page, target in tqdm(dataset):
# GT
gt_boxes = target["boxes"]
gt_labels = target["labels"]
if args.img_folder and args.label_file:
x, y, w, h = gt_boxes[:, 0], gt_boxes[:, 1], gt_boxes[:, 2], gt_boxes[:, 3]
xmin, ymin = np.clip(x - w / 2, 0, 1), np.clip(y - h / 2, 0, 1)
xmax, ymax = np.clip(x + w / 2, 0, 1), np.clip(y + h / 2, 0, 1)
gt_boxes = np.stack([xmin, ymin, xmax, ymax], axis=-1)
# Forward
if is_tf_available():
out = predictor(page[None, ...])
crops = extraction_fn(page, gt_boxes)
reco_out = predictor.reco_predictor(crops)
else:
with torch.no_grad():
out = predictor(page[None, ...])
# We directly crop on PyTorch tensors, which are in channels_first
crops = extraction_fn(page, gt_boxes, channels_last=False)
reco_out = predictor.reco_predictor(crops)
if len(reco_out):
reco_words, _ = zip(*reco_out)
else:
reco_words = []
# Unpack preds
pred_boxes = []
pred_labels = []
for page in out.pages:
height, width = page.dimensions
for block in page.blocks:
for line in block.lines:
for word in line.words:
if not args.rotation:
(a, b), (c, d) = word.geometry
else:
(
[x1, y1],
[x2, y2],
[x3, y3],
[x4, y4],
) = word.geometry
if np.issubdtype(gt_boxes.dtype, np.integer):
if not args.rotation:
pred_boxes.append([
int(a * width),
int(b * height),
int(c * width),
int(d * height),
])
else:
if args.eval_straight:
pred_boxes.append([
int(width * min(x1, x2, x3, x4)),
int(height * min(y1, y2, y3, y4)),
int(width * max(x1, x2, x3, x4)),
int(height * max(y1, y2, y3, y4)),
])
else:
pred_boxes.append([
[int(x1 * width), int(y1 * height)],
[int(x2 * width), int(y2 * height)],
[int(x3 * width), int(y3 * height)],
[int(x4 * width), int(y4 * height)],
])
else:
if not args.rotation:
pred_boxes.append([a, b, c, d])
else:
if args.eval_straight:
pred_boxes.append([
min(x1, x2, x3, x4),
min(y1, y2, y3, y4),
max(x1, x2, x3, x4),
max(y1, y2, y3, y4),
])
else:
pred_boxes.append([[x1, y1], [x2, y2], [x3, y3], [x4, y4]])
pred_labels.append(word.value)
# Update the metric
det_metric.update(gt_boxes, np.asarray(pred_boxes))
reco_metric.update(gt_labels, reco_words)
e2e_metric.update(gt_boxes, np.asarray(pred_boxes), gt_labels, pred_labels)
# Loop break
sample_idx += 1
if isinstance(args.samples, int) and args.samples == sample_idx:
break
if isinstance(args.samples, int) and args.samples == sample_idx:
break
# Unpack aggregated metrics
print(
f"Model Evaluation (model= {args.detection} + {args.recognition}, "
f"dataset={'OCRDataset' if args.img_folder else args.dataset})"
)
recall, precision, mean_iou = det_metric.summary()
print(f"Text Detection - Recall: {_pct(recall)}, Precision: {_pct(precision)}, Mean IoU: {_pct(mean_iou)}")
acc = reco_metric.summary()
print(f"Text Recognition - Accuracy: {_pct(acc['raw'])} (unicase: {_pct(acc['unicase'])})")
recall, precision, mean_iou = e2e_metric.summary()
print(
f"OCR - Recall: {_pct(recall['raw'])} (unicase: {_pct(recall['unicase'])}), "
f"Precision: {_pct(precision['raw'])} (unicase: {_pct(precision['unicase'])}), Mean IoU: {_pct(mean_iou)}"
)
def parse_args():
import argparse
parser = argparse.ArgumentParser(
description="DocTR end-to-end evaluation", formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("detection", type=str, help="Text detection model to use for analysis")
parser.add_argument("recognition", type=str, help="Text recognition model to use for analysis")
parser.add_argument("--iou", type=float, default=0.5, help="IoU threshold to match a pair of boxes")
parser.add_argument("--dataset", type=str, default="FUNSD", help="choose a dataset: FUNSD, CORD")
parser.add_argument("--img_folder", type=str, default=None, help="Only for local sets, path to images")
parser.add_argument("--label_file", type=str, default=None, help="Only for local sets, path to labels")
parser.add_argument("--rotation", dest="rotation", action="store_true", help="run rotated OCR + postprocessing")
parser.add_argument("-b", "--batch_size", type=int, default=32, help="batch size for recognition")
parser.add_argument("--size", type=int, default=1024, help="model input size, H = W")
parser.add_argument("--keep_ratio", action="store_true", help="keep the aspect ratio of the input image")
parser.add_argument("--symmetric_pad", action="store_true", help="pad the image symmetrically")
parser.add_argument("--samples", type=int, default=None, help="evaluate only on the N first samples")
parser.add_argument(
"--eval-straight",
action="store_true",
help="evaluate on straight pages with straight bbox (to use the quick and light metric)",
)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
main(args)