forked from go-python/gpython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pi_chudnovsky_bs.py
109 lines (97 loc) · 3.32 KB
/
pi_chudnovsky_bs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# Copyright 2018 The go-python Authors. All rights reserved.
# Use of this source code is governed by a BSD-style
# license that can be found in the LICENSE file.
"""
Python3 program to calculate Pi using python long integers, binary
splitting and the Chudnovsky algorithm
See: http://www.craig-wood.com/nick/articles/ FIXME for explanation
Nick Craig-Wood <[email protected]>
"""
import math
from time import time
def sqrt(n, one):
"""
Return the square root of n as a fixed point number with the one
passed in. It uses a second order Newton-Raphson convgence. This
doubles the number of significant figures on each iteration.
"""
# Use floating point arithmetic to make an initial guess
floating_point_precision = 10**16
n_float = float((n * floating_point_precision) // one) / floating_point_precision
x = (int(floating_point_precision * math.sqrt(n_float)) * one) // floating_point_precision
n_one = n * one
while 1:
x_old = x
x = (x + n_one // x) // 2
if x == x_old:
break
return x
def pi_chudnovsky_bs(digits):
"""
Compute int(pi * 10**digits)
This is done using Chudnovsky's series with binary splitting
"""
C = 640320
C3_OVER_24 = C**3 // 24
def bs(a, b):
"""
Computes the terms for binary splitting the Chudnovsky infinite series
a(a) = +/- (13591409 + 545140134*a)
p(a) = (6*a-5)*(2*a-1)*(6*a-1)
b(a) = 1
q(a) = a*a*a*C3_OVER_24
returns P(a,b), Q(a,b) and T(a,b)
"""
if b - a == 1:
# Directly compute P(a,a+1), Q(a,a+1) and T(a,a+1)
if a == 0:
Pab = Qab = 1
else:
Pab = (6*a-5)*(2*a-1)*(6*a-1)
Qab = a*a*a*C3_OVER_24
Tab = Pab * (13591409 + 545140134*a) # a(a) * p(a)
if a & 1:
Tab = -Tab
else:
# Recursively compute P(a,b), Q(a,b) and T(a,b)
# m is the midpoint of a and b
m = (a + b) // 2
# Recursively calculate P(a,m), Q(a,m) and T(a,m)
Pam, Qam, Tam = bs(a, m)
# Recursively calculate P(m,b), Q(m,b) and T(m,b)
Pmb, Qmb, Tmb = bs(m, b)
# Now combine
Pab = Pam * Pmb
Qab = Qam * Qmb
Tab = Qmb * Tam + Pam * Tmb
return Pab, Qab, Tab
# how many terms to compute
DIGITS_PER_TERM = math.log10(C3_OVER_24/6/2/6)
N = int(digits/DIGITS_PER_TERM + 1)
# Calclate P(0,N) and Q(0,N)
P, Q, T = bs(0, N)
one = 10**digits
sqrtC = sqrt(10005*one, one)
return (Q*426880*sqrtC) // T
# The last 5 digits or pi for various numbers of digits
check_digits = (
(100, 70679),
(1000, 1989),
(10000, 75678),
(100000, 24646),
(1000000, 58151),
(10000000, 55897),
)
if __name__ == "__main__":
digits = 100
pi = pi_chudnovsky_bs(digits)
print(str(pi))
for digits, check in check_digits:
start =time()
pi = pi_chudnovsky_bs(digits)
print("chudnovsky_gmpy_bs: digits",digits,"time",time()-start)
last_five_digits = pi % 100000
if check == last_five_digits:
print("Last 5 digits %05d OK" % last_five_digits)
else:
print("Last 5 digits %05d wrong should be %05d" % (last_five_digits, check))