forked from cran/pscl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict.ideal.Rd
93 lines (82 loc) · 3.77 KB
/
predict.ideal.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
\name{predict.ideal}
\alias{predict.ideal}
\alias{print.predict.ideal}
\title{predicted probabilities from an ideal object}
\description{Compute predicted probabilities from an \code{\link{ideal}}
object. This predict method uses the posterior mean values of \eqn{x}
and \eqn{\beta}{beta} to make predictions.}
\usage{
\method{predict}{ideal}(object,
cutoff=.5,
burnin=NULL,
...)
\method{print}{predict.ideal}(x,digits=2,...)
}
\arguments{
\item{object}{an object of class \code{ideal} (produced by
\code{\link{ideal}}) with item parameters (beta) stored; i.e.,
\code{store.item=TRUE} was set when the \code{ideal} object was
fitted}
\item{cutoff}{numeric, a value between 0 and 1, the threshold to be
used for classifying predicted probabilities of a Yea
votes as predicted Yea and Nay votes.}
\item{burnin}{of the recorded MCMC samples, how many to discard as
burnin? Default is \code{NULL}, in which case the value of
\code{burnin} in the \code{\link{ideal}} object is used.}
\item{x}{object of class \code{predict.ideal}}
\item{digits}{number of digits in printed object}
\item{...}{further arguments passed to or from other methods.}
}
\details{
Predicted probabilities are computed using the mean of the posterior
density of
of \eqn{x} (ideal points, or latent ability) and \eqn{\beta} (bill or
item parameters). The percentage correctly predicted
are determined by counting the percentages of votes with predicted
probabilities of a Yea vote greater than or equal to the \code{cutoff} as the
threshold.
}
\value{
An object of class \code{predict.ideal}, containing:
\item{pred.probs}{the calculated predicted probability for each
legislator for each vote.}
\item{prediction}{the calculated prediction (0 or 1) for each
legislator for each vote.}
\item{correct}{for each legislator for each vote, whether the
prediction was correct.}
\item{legis.percent}{for each legislator, the percent of votes
correctly predicted.}
\item{vote.percent}{for each vote, the percent correctly predicted.}
\item{yea.percent}{the percent of yea votes correctly predicted.}
\item{nay.percent}{the percent of nay votes correctly predicted.}
\item{party.percent}{the average value of the percent correctly
predicted by legislator, separated by party, if party information
exists in the \code{rollcall} object used for \code{ideal}. If no
party information is available, \code{party.percent = NULL}.}
\item{overall.percent}{the total percent of votes correctly
predicted.}
\item{ideal}{the name of the \code{\link{ideal}} object, which can be
later \code{\link{eval}}uated}
\item{desc}{string, the descriptive text from the
\code{\link{rollcall}} object passed to \code{\link{ideal}}}
}
\note{When specifying a value of \code{burnin} different from that used
in fitting the \code{\link{ideal}} object, note a distinction
between the iteration numbers of the stored iterations, and the
number of stored iterations. That is, the \code{n}-th iteration
stored in an \code{\link{ideal}} object will not be iteration
\code{n} if the user specified \code{thin>1} in the call to
\code{\link{ideal}}. Here, iterations are tagged with their
iteration number. Thus, if the user called \code{\link{ideal}} with
\code{thin=10} and \code{burnin=100} then the stored iterations are
numbered \code{100, 110, 120, ...}. Any future subsetting via a
\code{burnin} refers to this iteration number.}
\seealso{\code{\link{ideal}}, \code{\link{summary.ideal}}, \code{\link{plot.predict.ideal}}}
\examples{
data(s109)
f <- system.file("extdata","id1.rda",package="pscl")
load(f)
phat <- predict(id1)
phat ## print method
}
\keyword{classes}