forked from AlexeyAB/darknet
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcost_layer.c
148 lines (130 loc) · 4.07 KB
/
cost_layer.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#include "cost_layer.h"
#include "utils.h"
#include "dark_cuda.h"
#include "blas.h"
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
COST_TYPE get_cost_type(char *s)
{
if (strcmp(s, "sse")==0) return SSE;
if (strcmp(s, "masked")==0) return MASKED;
if (strcmp(s, "smooth")==0) return SMOOTH;
fprintf(stderr, "Couldn't find cost type %s, going with SSE\n", s);
return SSE;
}
char *get_cost_string(COST_TYPE a)
{
switch(a){
case SSE:
return "sse";
case MASKED:
return "masked";
case SMOOTH:
return "smooth";
default:
return "sse";
}
}
cost_layer make_cost_layer(int batch, int inputs, COST_TYPE cost_type, float scale)
{
fprintf(stderr, "cost %4d\n", inputs);
cost_layer l = { (LAYER_TYPE)0 };
l.type = COST;
l.scale = scale;
l.batch = batch;
l.inputs = inputs;
l.outputs = inputs;
l.cost_type = cost_type;
l.delta = (float*)xcalloc(inputs * batch, sizeof(float));
l.output = (float*)xcalloc(inputs * batch, sizeof(float));
l.cost = (float*)xcalloc(1, sizeof(float));
l.forward = forward_cost_layer;
l.backward = backward_cost_layer;
#ifdef GPU
l.forward_gpu = forward_cost_layer_gpu;
l.backward_gpu = backward_cost_layer_gpu;
l.delta_gpu = cuda_make_array(l.delta, inputs*batch);
l.output_gpu = cuda_make_array(l.output, inputs*batch);
#endif
return l;
}
void resize_cost_layer(cost_layer *l, int inputs)
{
l->inputs = inputs;
l->outputs = inputs;
l->delta = (float*)xrealloc(l->delta, inputs * l->batch * sizeof(float));
l->output = (float*)xrealloc(l->output, inputs * l->batch * sizeof(float));
#ifdef GPU
cuda_free(l->delta_gpu);
cuda_free(l->output_gpu);
l->delta_gpu = cuda_make_array(l->delta, inputs*l->batch);
l->output_gpu = cuda_make_array(l->output, inputs*l->batch);
#endif
}
void forward_cost_layer(cost_layer l, network_state state)
{
if (!state.truth) return;
if(l.cost_type == MASKED){
int i;
for(i = 0; i < l.batch*l.inputs; ++i){
if(state.truth[i] == SECRET_NUM) state.input[i] = SECRET_NUM;
}
}
if(l.cost_type == SMOOTH){
smooth_l1_cpu(l.batch*l.inputs, state.input, state.truth, l.delta, l.output);
} else {
l2_cpu(l.batch*l.inputs, state.input, state.truth, l.delta, l.output);
}
l.cost[0] = sum_array(l.output, l.batch*l.inputs);
}
void backward_cost_layer(const cost_layer l, network_state state)
{
axpy_cpu(l.batch*l.inputs, l.scale, l.delta, 1, state.delta, 1);
}
#ifdef GPU
void pull_cost_layer(cost_layer l)
{
cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs);
}
void push_cost_layer(cost_layer l)
{
cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs);
}
int float_abs_compare (const void * a, const void * b)
{
float fa = *(const float*) a;
if(fa < 0) fa = -fa;
float fb = *(const float*) b;
if(fb < 0) fb = -fb;
return (fa > fb) - (fa < fb);
}
void forward_cost_layer_gpu(cost_layer l, network_state state)
{
if (!state.truth) return;
if (l.cost_type == MASKED) {
mask_ongpu(l.batch*l.inputs, state.input, SECRET_NUM, state.truth);
}
if(l.cost_type == SMOOTH){
smooth_l1_gpu(l.batch*l.inputs, state.input, state.truth, l.delta_gpu, l.output_gpu);
} else {
l2_gpu(l.batch*l.inputs, state.input, state.truth, l.delta_gpu, l.output_gpu);
}
if(l.ratio){
cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs);
qsort(l.delta, l.batch*l.inputs, sizeof(float), float_abs_compare);
int n = (1-l.ratio) * l.batch*l.inputs;
float thresh = l.delta[n];
thresh = 0;
printf("%f\n", thresh);
supp_ongpu(l.batch*l.inputs, thresh, l.delta_gpu, 1);
}
cuda_pull_array(l.output_gpu, l.output, l.batch*l.inputs);
l.cost[0] = sum_array(l.output, l.batch*l.inputs);
}
void backward_cost_layer_gpu(const cost_layer l, network_state state)
{
axpy_ongpu(l.batch*l.inputs, l.scale, l.delta_gpu, 1, state.delta, 1);
}
#endif