-
Notifications
You must be signed in to change notification settings - Fork 3
/
RedBlackTreee.dfy
448 lines (389 loc) · 11.7 KB
/
RedBlackTreee.dfy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
datatype Label = Red | Black
datatype RBTree = Node(Label, RBTree, int, RBTree) | Leaf
predicate rbTree(node: RBTree)
{
match node
case Leaf => true
case Node(lbl, left, data, right) =>
match lbl
case Red =>
rbTree(left) &&
rbTree(right) &&
isBlack(left) &&
isBlack(right) &&
blackHeight(left) == blackHeight(right) &&
leqThan(left, data) &&
geqThan(right, data)
case Black =>
rbTree(left) &&
rbTree(right) &&
blackHeight(left) == blackHeight(right) &&
leqThan(left, data) &&
geqThan(right, data)
}
predicate quasiRbTree(node: RBTree)
{
match node
case Leaf => true
case Node(lbl, left, data, right) =>
rbTree(left) &&
rbTree(right) &&
blackHeight(left) == blackHeight(right) &&
leqThan(left, data) &&
geqThan(right, data)
}
function blackHeight(node: RBTree) : int
{
match node
case Leaf => 1
case Node(lbl, left, data, right) =>
match lbl {
case Red => max(blackHeight(left), blackHeight(right))
case Black => 1 + max(blackHeight(left), blackHeight(right))
}
}
predicate isBlack(node: RBTree)
{
match node
case Leaf => true
case Node(lbl, _, _, _) =>
match lbl
case Black => true
case Red => false
}
predicate leqThan(node: RBTree, num: int)
{
forall y :: (y in Elements(node)) ==> y <= num
}
predicate geqThan(node: RBTree, num: int)
{
forall y :: (y in Elements(node)) ==> y >= num
}
predicate sorted(a: array<int>, min: int, max: int)
requires a != null;
requires 0 <= min <= max < a.Length;
reads a;
{
forall j, k :: min <= j < k <= max ==> a[j] <= a[k]
}
predicate sortedSeq(s: seq<int>)
{
forall j, k :: 0 <= j < k < |s| ==> s[j] <= s[k]
}
function max(a: int, b: int) : int
{
if a > b then a else b
}
function Elements(node: RBTree) : multiset<int>
{
match node
case Leaf => multiset{}
case Node(lbl, left, data, right) =>
Elements(left) + multiset{data} + Elements(right)
}
lemma leqMember(nodex: int, node: RBTree, y: int)
requires leqThan(node, y);
requires nodex in Elements(node);
ensures nodex <= y;
{
}
lemma geqMember(nodex: int, node: RBTree, y: int)
requires geqThan(node, y);
requires nodex in Elements(node);
ensures nodex >= y;
{
}
method Balance_LRed_RBlack_LLBlack(ll: RBTree, lx: int, lr: RBTree, data: int, r: RBTree) returns (ret: RBTree) // ret = r + 1
requires rbTree(ll);
requires rbTree(lr);
requires rbTree(r);
requires blackHeight(ll) == blackHeight(r);
requires blackHeight(lr) == blackHeight(r);
requires leqThan(ll, lx);
requires geqThan(lr, lx);
requires lx <= data;
requires leqThan(lr, data);
requires geqThan(r, data);
requires isBlack(ll);
ensures Elements(ret) == Elements(ll) + multiset{lx} + Elements(lr) +
multiset{data} +
Elements(r);
ensures rbTree(ret);
ensures blackHeight(ret) == (blackHeight(r) + 1);
{
var l := Node(Red, ll, lx, lr);
match lr {
case Node(lrLbl, lrl, lrx, lrr) =>
match lrLbl {
case Red => // Case 3: Left is red, right is black, left left is black, left right is red
// Result: ret is red, right and left are black (rotated)
var newLeft := Node(Black, ll, lx, lrl);
var newRight := Node(Black, lrr, data, r);
assert Elements(lrl) <= Elements(lr);
assert Elements(lrr) <= Elements(lr);
ret := Node(Red, newLeft, lrx, newRight);
case Black => // Case 4: Left is red, right is black, left left is black, left right is black
// Result: ret is black
ret := Node(Black, l, data, r);
}
case Leaf =>
ret := Node(Black, l, data, r);
}
}
method Balance_LRed_RBlack(ll: RBTree, lx: int, lr: RBTree, data: int, r: RBTree) returns (ret: RBTree) // ret = r + 1
requires rbTree(ll);
requires rbTree(lr);
requires rbTree(r);
requires blackHeight(ll) == blackHeight(r);
requires blackHeight(lr) == blackHeight(r);
requires leqThan(ll, lx);
requires geqThan(lr, lx);
requires lx <= data;
requires leqThan(lr, data);
requires geqThan(r, data);
requires isBlack(r);
ensures Elements(ret) == Elements(ll) + multiset{lx} + Elements(lr) +
multiset{data} +
Elements(r);
ensures rbTree(ret);
ensures blackHeight(ret) == (blackHeight(r) + 1);
{
var left := Node(Red, ll, lx, lr);
match ll {
case Node(llLbl, lll, llx, llr) =>
match llLbl {
case Red => // Case 2: Left is red, right is black, left left is red.
// Result: ret is red, right and left are black (rotated)
var newLeft := Node(Black, lll, llx, llr);
var newRight := Node(Black, lr, data, r);
ret := Node(Red, newLeft, lx, newRight);
case Black =>
ret := Balance_LRed_RBlack_LLBlack(ll, lx, lr, data, r);
}
case Leaf =>
ret := Balance_LRed_RBlack_LLBlack(ll, lx, lr, data, r);
}
}
method Balance_LBlack_RRed(l: RBTree, data: int, rl: RBTree, rx: int, rr: RBTree) returns (ret: RBTree)
requires rbTree(l);
requires rbTree(rl);
requires rbTree(rr);
requires blackHeight(l) == blackHeight(rl);
requires blackHeight(rl) == blackHeight(rr);
requires leqThan(l, data);
requires geqThan(rl, data);
requires rx >= data;
requires leqThan(rl, rx);
requires geqThan(rr, rx);
ensures Elements(ret) == Elements(l) +
multiset{data} +
Elements(rl) + multiset{rx} + Elements(rr);
ensures rbTree(ret);
ensures blackHeight(ret) == (blackHeight(l) + 1);
{
var r := Node(Red, rl, rx, rr);
match rl {
case Node(rlLbl, rll, rlx, rlr) =>
match rlLbl {
case Red => // Case 5: Left is black, right is red, right left is red
// Result: ret is red, right and left are black (rotated)
var newLeft := Node(Black, l, data, rll);
var newRight := Node(Black, rlr, rx, rr);
assert Elements(rll) <= Elements(rl);
assert Elements(rlr) <= Elements(rl);
ret := Node(Red, newLeft, rlx, newRight);
case Black =>
ret := Balance_LBlack_RRed_RLBlack(l, data, rl, rx, rr);
}
case Leaf =>
ret := Balance_LBlack_RRed_RLBlack(l, data, rl, rx, rr);
}
}
method Balance_LBlack_RRed_RLBlack(l: RBTree, data: int, rl: RBTree, rx: int, rr: RBTree) returns (ret: RBTree)
requires rbTree(l);
requires rbTree(rl);
requires rbTree(rr);
requires blackHeight(l) == blackHeight(rl);
requires blackHeight(rl) == blackHeight(rr);
requires leqThan(l, data);
requires geqThan(rl, data);
requires rx >= data;
requires leqThan(rl, rx);
requires geqThan(rr, rx);
requires isBlack(rl);
ensures Elements(ret) == Elements(l) +
multiset{data} +
Elements(rl) + multiset{rx} + Elements(rr);
ensures rbTree(ret);
ensures blackHeight(ret) == (blackHeight(l) + 1);
{
var r := Node(Red, rl, rx, rr);
match rr {
case Node(rrLbl, rrl, rrx, rrr) =>
match rrLbl {
case Red => // Case 6: Left is black, right is red, right left is black, right right is red
// Result: ret is red, right and left are black (rotated)
var newLeft := Node(Black, l, data, rl);
var newRight := Node(Black, rrl, rrx, rrr);
assert Elements(rrl) <= Elements(rr);
assert Elements(rrr) <= Elements(rr);
ret := Node(Red, newLeft, rx, newRight);
case Black => // Case 4: Left is black, right is red, right left is black, right right is black
// Result: ret is black
ret := Node(Black, l, data, r);
}
case Leaf =>
ret := Node(Black, l, data, r);
}
}
method Balance(l: RBTree, data: int, r: RBTree) returns (ret: RBTree)
requires quasiRbTree(l);
requires quasiRbTree(r);
requires leqThan(l, data);
requires geqThan(r, data);
requires blackHeight(l) == blackHeight(r);
ensures Elements(ret) == Elements(l) + multiset{data} + Elements(r);
ensures rbTree(ret);
ensures blackHeight(ret) == (blackHeight(r) + 1);
{
match l {
case Node(llbl, ll, lx, lr) =>
leqMember(lx, l, data);
assert forall j :: j in Elements(lr) ==> j in Elements(l);
match r {
case Node(rlbl, rl, rx, rr) =>
geqMember(rx, r, data);
assert forall j :: j in Elements(rl) ==> j in Elements(r);
match llbl {
case Red =>
match rlbl {
case Red => // Case 1: Both left and right are red
// Result: ret is red, left and right are black
var newLeft := Node(Black, ll, lx, lr);
var newRight := Node(Black, rl, rx, rr);
ret := Node(Red, newLeft, data, newRight);
case Black =>
ret := Balance_LRed_RBlack(ll, lx, lr, data, r);
}
case Black =>
match rlbl {
case Red =>
ret := Balance_LBlack_RRed(l, data, rl, rx, rr);
case Black => // Case 4: Left is black, right is black
ret := Node(Black, l, data, r);
}
}
case Leaf =>
match llbl {
case Red =>
ret := Balance_LRed_RBlack(ll, lx, lr, data, r);
case Black =>
ret := Node(Black, l, data, r);
}
}
case Leaf =>
match r {
case Node(rlbl, rl, rx, rr) =>
geqMember(rx, r, data);
assert forall j :: j in Elements(rl) ==> j in Elements(r);
match rlbl {
case Red =>
ret := Balance_LBlack_RRed(l, data, rl, rx, rr);
case Black => // Case 4: Left is black, right is black
ret := Node(Black, l, data, r);
}
case Leaf => // Case 4: Left is black, right is black
ret := Node(Black, l, data, r);
}
}
}
method InsertAux(node: RBTree, x: int) returns (ret: RBTree)
requires rbTree(node);
ensures quasiRbTree(ret);
ensures Elements(ret) == Elements(node) + multiset{x};
ensures blackHeight(node) == blackHeight(ret);
ensures isBlack(node) ==> rbTree(ret);
{
match node
case Leaf =>
ret := Node(Red, Leaf, x, Leaf);
case Node(lbl, left, data, right) =>
match lbl
case Black =>
if (x <= data) {
var newLeft := InsertAux(left, x);
ret := Balance(newLeft, data, right);
}
else {
var newRight := InsertAux(right, x);
ret := Balance(left, data, newRight);
}
case Red =>
if (x <= data) {
var newLeft := InsertAux(left, x);
ret := Node(Red, newLeft, data, right);
}
else {
var newRight := InsertAux(right, x);
ret := Node(Red, left, data, newRight);
}
}
method Insert(node: RBTree, x: int) returns (ret: RBTree)
requires rbTree(node);
ensures rbTree(ret);
ensures Elements(ret) == Elements(node) + multiset{x};
{
var newNode := InsertAux(node, x);
match newNode
case Leaf =>
ret := Leaf;
case Node(lbl, left, data, right) =>
ret := Node(Black, left, data, right);
}
method Traverse(node: RBTree) returns (ret: seq<int>)
requires rbTree(node);
ensures sortedSeq(ret);
ensures Elements(node) == multiset(ret);
{
match node
case Leaf =>
ret := [];
case Node(lbl, left, data, right) =>
var seqLeft := Traverse(left);
var seqRight := Traverse(right);
assert forall i :: 0 <= i < |seqLeft| ==> seqLeft[i] in Elements(left);
assert forall i :: 0 <= i < |seqRight| ==> seqRight[i] in Elements(right);
ret := seqLeft + [data] + seqRight;
}
method Sort(a: array<int>)
modifies a;
requires a != null;
requires a.Length > 0;
ensures multiset(a[..]) == multiset(old(a[..]));
ensures sorted(a, 0, a.Length - 1);
{
var i := 0;
var node := Leaf;
while (i < a.Length)
invariant 0 <= i <= a.Length;
invariant rbTree(node);
invariant forall j :: 0 <= j <= a.Length ==> a[0..j] == old(a[0..j]);
invariant multiset(old(a[0..i])) == Elements(node);
{
node := Insert(node, a[i]);
i := i + 1;
}
assert old(a[0..(a.Length)]) == old(a[..]);
var sequence := Traverse(node);
assert |multiset(a[..])| == |sequence|;
i := 0;
while (i < |sequence|)
invariant 0 <= i <= |sequence|;
invariant 0 <= i <= a.Length;
invariant a[0..i] == sequence[0..i];
{
a[i] := sequence[i];
i := i + 1;
}
assert a[..] == sequence;
}