-
Notifications
You must be signed in to change notification settings - Fork 241
/
Copy pathmodpol.cpp
668 lines (615 loc) · 17.4 KB
/
modpol.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
//
// Program to generate Modular Polynomials mod p, as required for fast
// implementations of the Schoof-Elkies-Atkins algorithm
// for counting points on an elliptic curve Y^2=X^3 + A.X + B mod p
//
// Implemented entirely from the description provided in:
// 1. "Distributed Computation of the number of points on an elliptic curve
// over a finite prime field", Buchmann, Mueller, & Shoup, SFB 124-TP D5
// Report 03/95, April 1995, Universitat des Saarlandes, and
// 2. "Counting the number of points on elliptic curves over finite fields
// of characteristic greater than three", Lehmann, Maurer, Mueller & Shoup,
// Proc. 1st Algorithmic Number Theory Symposium (ANTS), pp 60-70, 1994
//
// Both papers are available on the Web from Volker Mueller's home page
// www.informatik.th-darmstadt.de/TI/Mitarbeiter/vmueller.html
//
// Also strongly recommended is the book
//
// 3. "Elliptic Curves in Cryptography"
// by Blake, Seroussi and Smart, London Mathematical Society Lecture Note
// Series 265, Cambridge University Press. ISBN 0 521 65374 6
//
// The programs's output for each prime in the range is a bivariate polynomial
// in X and Y, which can optionally be stored to disk. Some informative output
// is generated just to convince you that it is still working, and to give an
// idea of progress.
//
// This program is a composite of the "mueller" and "process" applications.
// It generates the modular polynomials, pre-reduced wrt to a specified prime
// modulus. This may be the only feasible way to do it on a small computer
// system, for which the "mueller" application is too resource intensive.
//
// Although less memory intensive than "mueller", problems may still arise.
// See mueller.cpp for a description of the -s2, -s3 and -s6 flags
//
// .pol file format
// <modulus>,<prime>,<1st coef>,<1st power of X>,<1st power of Y>,<2nd coef>...
// Each polynomial ends wih zero powers of X and Y.
//
// For example
// modpol -d -f 2#512 0 500 -o test512.pol
//
// If appending to a file with the -a flag, make sure and use the same
// prime modulus as used to create the file originally - no check is made
//
// generates the test512.pol file directly, given the range 0 to 500 and
// using the first prime modulus it can find less than 2^512. This file can
// then be used directly with the "sea" application
//
#include <iostream>
#include <fstream>
#include <cstring>
#include <iomanip>
#include "ps_zzn.h" // power series class
using namespace std;
extern int psN; // power series are modulo x^psN
BOOL fout;
BOOL append;
Miracl precision=20;
ofstream mueller;
// Code to parse formula in command line
// This code isn't mine, but its public domain
// Shamefully I forget the source
//
// NOTE: It may be necessary on some platforms to change the operators * and #
//
#if defined(unix)
#define TIMES '.'
#define RAISE '^'
#else
#define TIMES '*'
#define RAISE '#'
#endif
Big tt;
static char *ss;
void eval_power (Big& oldn,Big& n,char op)
{
if (op) n=pow(oldn,toint(n)); // power(oldn,size(n),n,n);
}
void eval_product (Big& oldn,Big& n,char op)
{
switch (op)
{
case TIMES:
n*=oldn;
break;
case '/':
n=oldn/n;
break;
case '%':
n=oldn%n;
}
}
void eval_sum (Big& oldn,Big& n,char op)
{
switch (op)
{
case '+':
n+=oldn;
break;
case '-':
n=oldn-n;
}
}
void eval (void)
{
Big oldn[3];
Big n;
int i;
char oldop[3];
char op;
char minus;
for (i=0;i<3;i++)
{
oldop[i]=0;
}
LOOP:
while (*ss==' ')
ss++;
if (*ss=='-') /* Unary minus */
{
ss++;
minus=1;
}
else
minus=0;
while (*ss==' ')
ss++;
if (*ss=='(' || *ss=='[' || *ss=='{') /* Number is subexpression */
{
ss++;
eval ();
n=tt;
}
else /* Number is decimal value */
{
for (i=0;ss[i]>='0' && ss[i]<='9';i++)
;
if (!i) /* No digits found */
{
cout << "Error - invalid number" << endl;
exit (20);
}
op=ss[i];
ss[i]=0;
n=atoi(ss);
ss+=i;
*ss=op;
}
if (minus) n=-n;
do
op=*ss++;
while (op==' ');
if (op==0 || op==')' || op==']' || op=='}')
{
eval_power (oldn[2],n,oldop[2]);
eval_product (oldn[1],n,oldop[1]);
eval_sum (oldn[0],n,oldop[0]);
tt=n;
return;
}
else
{
if (op==RAISE)
{
eval_power (oldn[2],n,oldop[2]);
oldn[2]=n;
oldop[2]=RAISE;
}
else
{
if (op==TIMES || op=='/' || op=='%')
{
eval_power (oldn[2],n,oldop[2]);
oldop[2]=0;
eval_product (oldn[1],n,oldop[1]);
oldn[1]=n;
oldop[1]=op;
}
else
{
if (op=='+' || op=='-')
{
eval_power (oldn[2],n,oldop[2]);
oldop[2]=0;
eval_product (oldn[1],n,oldop[1]);
oldop[1]=0;
eval_sum (oldn[0],n,oldop[0]);
oldn[0]=n;
oldop[0]=op;
}
else /* Error - invalid operator */
{
cout << "Error - invalid operator" << endl;
exit (20);
}
}
}
}
goto LOOP;
}
//
// When summing the Zk^n 0<=k<L (1. page 3, top), most terms cancel out,
// leaving only every L-th term
//
Ps_ZZn phase(Ps_ZZn &z, int L,int off)
{ // Keep L times every L-th element in the Power Series
Ps_ZZn w;
term_ps_zzn *pos=NULL;
int i,k;
k=off+z.first();
for (i=off;i<psN;i+=L,k+=L)
{
pos=w.addterm(L*z.coeff(k),k,pos);
}
return w;
}
void mueller_pol(int L,int s)
{ // Calculate Modular Polynomial for prime L
// s is smallest int such that s*(L-1)/12 is integer
int i,j,n,v;
Ps_ZZn klein,flt,zlt,x,y,z,f,jlt[500],c[1000],ps[1000];
// First calculate v, and hence psN - number of terms in Power Series
// 2. page 5 1st para
cout << "preliminaries" << flush;
v=s*(L-1)/12;
psN=v+2;
//
// calculate Klein=j(tau) from its definition
// Numerator x...
//
// 1. page 2
//
for (n=1;n<psN;n++)
{
Ps_ZZn a,b,t;
a.addterm((ZZn)n*n*n,n); // a=n^3*x^n
b.addterm((ZZn)1,0);
b.addterm((ZZn)-1,n);
t=a/b;
x+=t;
}
x=(ZZn)240*x;
x.addterm((ZZn)1,0);
x=pow(x,3);
// Denominator y...
y=eta();
y=pow(y,24);
klein=x/y;
cout << "." << flush;
klein.divxn(1); // divides power series by x^parameter
psN*=L;
// cout << "psN= " << psN << endl;
klein=power(klein,L); // this substitutes x^L for x in the power series
cout << "." << flush;
// Find Fl(t), Numerator z= Dedekind eta function
// This has a simple repeating pattern of coefficients, and so costs nothing
// to calculate 1. page 2 bottom
z=eta();
// Denominator y=n(Lt)...
y=power(z,L);
y=(ZZn)1/y; // y has only psN/L terms.
cout << "." << flush;
z*=y; // z has psN terms
flt=pow(z,2*s); // ^2*s - expensive
cout << "." << flush;
flt.divxn(v); // times x^-v
ZZn w=pow((ZZn)L,s);
y=power(flt,L);
cout << "." << flush;
zlt=w/y; // l^s/Fl(lt) - cheap - psN/L terms in power series
cout << "." << endl;
y.clear();
x.clear();
ps[0]=L+1;
//
// Calculate Power Sums. Note that f and flt are very large objects
// with psN terms. Most other power series are in "compressed" form
// with "only" psN/L terms
//
// 1. page 3
//
cout << "Power Sum = " << flush;
z=1;
f=1;
for (i=1;i<=L+1;i++)
{
cout << setw(3) << i << flush;
f*=flt; // expensive. In place multiplication discourages C++
// from moving large objects about
z=z*zlt; // cheap
ps[i]=phase(f,L,(i*v)%L)+z;
cout << "\b\b\b" << flush;
}
cout << setw(3) << L+1 << endl;
f.clear();
z.clear();
flt.clear();
zlt.clear();
cout << "Coefficient = " << flush;
c[0]=1;
//
// Newton's Identities - Calculate coefficients from Power Sums
//
// from a Web page somewhere and 3. page 54
//
for (i=1;i<=L+1;i++)
{
cout << setw(3) << i << flush;
c[i]=0;
for (j=1;j<=i;j++)
c[i]+=(ps[j]*c[i-j]); // cheap, but lots of them
c[i]=(-c[i])/i;
cout << "\b\b\b" << flush;
}
cout << setw(3) << L+1 << endl;
for (i=0;i<=L+1;i++) ps[i].clear(); // reclaim space
//
// Get powers of j(Lt)^i, i=1 to v
// These will be needed to determine the exponent of Y in each
// coefficient of the Modular Polynomial
//
jlt[0]=1;
jlt[1]=klein;
for (i=2;i<=v;i++)
jlt[i]=jlt[i-1]*klein; // cheap
//
// Find Modular Polynomial, format it, and output
//
// 2. page 5, middle "Hl(X) = ..."
//
cout << "\nG" << L << "(X,Y) = X^" << L+1 ;
if (fout)
{
mueller << L << endl;
mueller << 1 << "\n" << L+1 << "\n" << 0 << endl;
}
for (i=1;i<=L+1;i++)
{
ZZn cf;
BOOL brackets,first;
first=TRUE;
brackets=FALSE;
z=c[i];
// idea is to reduce this to an integer
// by subtracting j(Lt)^k as necessary
// The power of k required is then
// the coefficient of Y^k in G(X,Y)
// The first coefficient of c[i] tells us which j(Lt)^k to try
if (z.first()!=0)
{
brackets=TRUE;
cout << "+(" ;
}
// coefficient may be a polynomial in Y
while (z.first()!=0)
{
int j=(-z.first()/L); // index into jlt
cf=z.coeff(z.first()); // get coefficient to be cancelled
if (fout) mueller << cf << "\n" << L+1-i << "\n" << j << endl;
if (cf==0) break;
z-=(jlt[j]*cf);
if (!first || !brackets) cout << "+";
first=FALSE;
if (cf==1) cout << "Y";
else cout << cf << "*Y";
if (j!=1) cout << "^" << j;
}
cf=z.coeff(0);
if (fout) mueller << cf << "\n" << L+1-i << "\n" << 0 << endl;
if (brackets)
{
cout << "+" << cf << ")*X";
if (i!=L) cout << "^" << L+1-i ;
}
else
{
if (i==L+1)
{
cout << "+" << cf;
continue;
}
if (cf!=0)
{
if (cf==1) cout << "+X";
else cout << "+" << cf << "*X";
if (i!=L) cout << "^" << L+1-i ;
}
}
// all other coefficients should now be zero
if (z.coeff(L)!=0)
{ // check next coefficient is zero
cout << "\n\n Sanity Check Failed " << endl;
exit(0);
}
}
for (i=0;i<=L+1;i++) c[i].clear(); // reclaim space
for (i=0;i<=v;i++) jlt[i].clear();
cout << endl;
fft_reset();
}
int main(int argc,char **argv)
{
Big p;
miracl *mip=get_mip();
int i,j,s,lo,hi,sp,ip,skip;
int primes[200];
BOOL dir,gotP,gothi,gotlo;
argv++; argc--;
int Base;
if (argc<1)
{
cout << "Incorrect usage" << endl;
cout << "Program generates Modular Polynomials, for use by fast Schoof-Elkies-Atkins" << endl;
cout << "program for counting points on an elliptic curve" << endl;
cout << "modpol <prime modulus P> <low number> <high number>" << endl;
cout << "OR" << endl;
cout << "modpol <formula for P> <low number> <high number>" << endl;
cout << "where the numbers define a range. The program will find the" << endl;
cout << "Modular Polynomials for primes in this range wrt the specified modulus" << endl;
cout << "To input P in Hex, precede with -h" << endl;
cout << "To search downwards for a prime, use flag -d" << endl;
cout << "NOTE: Program is both memory and time intensive" << endl;
cout << "To skip \"difficult\" primes, use -s2, -s3 or -s6" << endl;
cout << "where -s2 skips most and -s6 skips least" << endl;
cout << "To output polynomials to a file use flag -o <filename>" << endl;
#if defined(unix)
cout << "e.g. modpol -f 2^192-2^64-1 0 150 -o p192.pol" << endl;
#else
cout << "e.g. modpol -f 2#192-2#64-1 0 150 -o p192.pol" << endl;
#endif
cout << "Alternatively to append to a file use flag -a <filename>" << endl;
cout << "See source code file for details" << endl;
cout << "\nFreeware from Certivox, Dublin, Ireland" << endl;
cout << "Full C++ source code and MIRACL multiprecision library available" << endl;
cout << "email [email protected]" << endl;
return 0;
}
if (argc<3)
{
cout << "Error in command line" << endl;
return 0;
}
ip=0;
skip=12;
fout=FALSE;
dir=gotP=gothi=gotlo=FALSE;
append=FALSE;
Base=10;
while (ip<argc)
{
if (!gotP && strcmp(argv[ip],"-f")==0)
{
ip++;
if (!gotP && ip<argc)
{
ss=argv[ip++];
tt=0;
eval();
p=tt;
gotP=TRUE;
continue;
}
else
{
cout << "Error in command line" << endl;
return 0;
}
}
if (strcmp(argv[ip],"-d")==0)
{
ip++;
dir=TRUE;
continue;
}
if (skip==12 && strcmp(argv[ip],"-s2")==0)
{
ip++;
skip=2;
continue;
}
if (skip==12 && strcmp(argv[ip],"-s3")==0)
{
ip++;
skip=3;
continue;
}
if (skip==12 && strcmp(argv[ip],"-s6")==0)
{
ip++;
skip=6;
continue;
}
if (!fout && strcmp(argv[ip],"-o")==0)
{
ip++;
if (ip<argc)
{
fout=TRUE;
append=FALSE;
mueller.open(argv[ip++]);
continue;
}
else
{
cout << "Error in command line" << endl;
return 0;
}
}
if (!fout && strcmp(argv[ip],"-a")==0)
{
ip++;
if (ip<argc)
{
fout=TRUE;
append=TRUE;
mueller.open(argv[ip++],ios::app);
continue;
}
else
{
cout << "Error in command line" << endl;
return 0;
}
}
if (strcmp(argv[ip],"-h")==0)
{
ip++;
Base=16;
continue;
}
if (!gotP)
{
mip->IOBASE=Base;
p=argv[ip++];
mip->IOBASE=10;
gotP=TRUE;
continue;
}
if (!gotlo)
{
lo=atoi(argv[ip++]);
gotlo=TRUE;
continue;
}
if (!gothi)
{
hi=atoi(argv[ip++]);
gothi=TRUE;
continue;
}
cout << "Error in command line" << endl;
return 0;
}
if (!gothi || !gotlo)
{
cout << "Error in command line" << endl;
return 0;
}
if (lo>hi || hi>1000)
{
cout << "Invalid range specified" << endl;
return 0;
}
gprime(1000); // get all primes < 1000
for (i=0;;i++)
{
sp=mip->PRIMES[i];
primes[i]=sp;
if (sp==0) break;
}
if (!prime(p))
{
int incr=0;
cout << "That number is not prime!" << endl;
if (dir)
{
cout << "Looking for next lower prime" << endl;
p-=1; incr++;
while (!prime(p)) { p-=1; incr++; }
cout << "Prime P = P-" << incr << endl;
}
else
{
cout << "Looking for next higher prime" << endl;
p+=1; incr++;
while (!prime(p)) { p+=1; incr++; }
cout << "Prime P = P+" << incr << endl;
}
cout << "Prime P = " << p << endl;
}
cout << "P mod 24 = " << p%24 << endl;
cout << "P is " << bits(p) << " bits long" << endl;
if (fout && !append) mueller << p << endl;
modulo(p); // Set prime modulus for ZZn type
for (j=0,i=1;;i++) // lets go
{
sp=primes[i];
if (sp==0) break;
if (sp<lo) continue;
if (sp>hi) break;
for (s=1;;s++)
if (s*(sp-1)%12==0) break;
if (s>=skip) continue;
j++;
cout << endl;
cout << "prime " << j << " = " << sp << " (s=" << s << ")" << endl;
mueller_pol(sp,s);
}
cout << endl;
if (j==0) cout << "No primes processed in the specified range" << endl;
if (j==1) cout << "One prime processed in the specified range" << endl;
if (j>1) cout << j << " primes processed in the specified range" << endl;
return 0;
}