.. index:: ! assembly, ! asm, ! evmasm
Solidity defines an assembly language that can also be used without Solidity. This assembly language can also be used as "inline assembly" inside Solidity source code. We start with describing how to use inline assembly and how it differs from standalone assembly and then specify assembly itself.
For more fine-grained control especially in order to enhance the language by writing libraries, it is possible to interleave Solidity statements with inline assembly in a language close to the one of the virtual machine. Due to the fact that the EVM is a stack machine, it is often hard to address the correct stack slot and provide arguments to opcodes at the correct point on the stack. Solidity's inline assembly tries to facilitate that and other issues arising when writing manual assembly by the following features:
- functional-style opcodes:
mul(1, add(2, 3))
- assembly-local variables:
let x := add(2, 3) let y := mload(0x40) x := add(x, y)
- access to external variables:
function f(uint x) public { assembly { x := sub(x, 1) } }
- loops:
for { let i := 0 } lt(i, x) { i := add(i, 1) } { y := mul(2, y) }
- if statements:
if slt(x, 0) { x := sub(0, x) }
- switch statements:
switch x case 0 { y := mul(x, 2) } default { y := 0 }
- function calls:
function f(x) -> y { switch x case 0 { y := 1 } default { y := mul(x, f(sub(x, 1))) } }
We now want to describe the inline assembly language in detail.
Warning
Inline assembly is a way to access the Ethereum Virtual Machine at a low level. This discards several important safety features of Solidity.
Note
TODO: Write about how scoping rules of inline assembly are a bit different and the complications that arise when for example using internal functions of libraries. Furthermore, write about the symbols defined by the compiler.
The following example provides library code to access the code of another contract and
load it into a bytes
variable. This is not possible at all with "plain Solidity" and the
idea is that assembly libraries will be used to enhance the language in such ways.
pragma solidity ^0.4.0; library GetCode { function at(address _addr) public view returns (bytes memory o_code) { assembly { // retrieve the size of the code, this needs assembly let size := extcodesize(_addr) // allocate output byte array - this could also be done without assembly // by using o_code = new bytes(size) o_code := mload(0x40) // new "memory end" including padding mstore(0x40, add(o_code, and(add(add(size, 0x20), 0x1f), not(0x1f)))) // store length in memory mstore(o_code, size) // actually retrieve the code, this needs assembly extcodecopy(_addr, add(o_code, 0x20), 0, size) } } }
Inline assembly could also be beneficial in cases where the optimizer fails to produce efficient code. Please be aware that assembly is much more difficult to write because the compiler does not perform checks, so you should use it for complex things only if you really know what you are doing.
pragma solidity ^0.4.16; library VectorSum { // This function is less efficient because the optimizer currently fails to // remove the bounds checks in array access. function sumSolidity(uint[] memory _data) public pure returns (uint o_sum) { for (uint i = 0; i < _data.length; ++i) o_sum += _data[i]; } // We know that we only access the array in bounds, so we can avoid the check. // 0x20 needs to be added to an array because the first slot contains the // array length. function sumAsm(uint[] memory _data) public pure returns (uint o_sum) { for (uint i = 0; i < _data.length; ++i) { assembly { o_sum := add(o_sum, mload(add(add(_data, 0x20), mul(i, 0x20)))) } } } // Same as above, but accomplish the entire code within inline assembly. function sumPureAsm(uint[] memory _data) public pure returns (uint o_sum) { assembly { // Load the length (first 32 bytes) let len := mload(_data) // Skip over the length field. // // Keep temporary variable so it can be incremented in place. // // NOTE: incrementing _data would result in an unusable // _data variable after this assembly block let data := add(_data, 0x20) // Iterate until the bound is not met. for { let end := add(data, mul(len, 0x20)) } lt(data, end) { data := add(data, 0x20) } { o_sum := add(o_sum, mload(data)) } } } }
Assembly parses comments, literals and identifiers exactly as Solidity, so you can use the
usual //
and /* */
comments. Inline assembly is marked by assembly { ... }
and inside
these curly braces, the following can be used (see the later sections for more details)
- literals, i.e.
0x123
,42
or"abc"
(strings up to 32 characters)- opcodes in functional style, e.g.
add(1, mlod(0))
- labels, e.g.
name:
- variable declarations, e.g.
let x := 7
,let x := add(y, 3)
orlet x
(initial value of empty (0) is assigned)- identifiers (labels or assembly-local variables and externals if used as inline assembly), e.g.
jump(name)
,3 x add
- assignments (in "instruction style"), e.g.
3 =: x
- assignments in functional style, e.g.
x := add(y, 3)
- blocks where local variables are scoped inside, e.g.
{ let x := 3 { let y := add(x, 1) } }
This document does not want to be a full description of the Ethereum virtual machine, but the following list can be used as a reference of its opcodes.
If an opcode takes arguments (always from the top of the stack), they are given in parentheses.
Note that the order of arguments can be seen to be reversed in non-functional style (explained below).
Opcodes marked with -
do not push an item onto the stack, those marked with *
are
special and all others push exactly one item onto the stack.
Opcodes marked with F
, H
, B
or C
are present since Frontier, Homestead, Byzantium or Constantinople, respectively.
Constantinople is still in planning and all instructions marked as such will result in an invalid instruction exception.
In the following, mem[a...b)
signifies the bytes of memory starting at position a
up to
(excluding) position b
and storage[p]
signifies the storage contents at position p
.
The opcodes pushi
and jumpdest
cannot be used directly.
In the grammar, opcodes are represented as pre-defined identifiers.
Instruction | Explanation | ||
---|---|---|---|
stop | - | F | stop execution, identical to return(0,0) |
add(x, y) | F | x + y | |
sub(x, y) | F | x - y | |
mul(x, y) | F | x * y | |
div(x, y) | F | x / y | |
sdiv(x, y) | F | x / y, for signed numbers in two's complement | |
mod(x, y) | F | x % y | |
smod(x, y) | F | x % y, for signed numbers in two's complement | |
exp(x, y) | F | x to the power of y | |
not(x) | F | ~x, every bit of x is negated | |
lt(x, y) | F | 1 if x < y, 0 otherwise | |
gt(x, y) | F | 1 if x > y, 0 otherwise | |
slt(x, y) | F | 1 if x < y, 0 otherwise, for signed numbers in two's complement | |
sgt(x, y) | F | 1 if x > y, 0 otherwise, for signed numbers in two's complement | |
eq(x, y) | F | 1 if x == y, 0 otherwise | |
iszero(x) | F | 1 if x == 0, 0 otherwise | |
and(x, y) | F | bitwise and of x and y | |
or(x, y) | F | bitwise or of x and y | |
xor(x, y) | F | bitwise xor of x and y | |
byte(n, x) | F | nth byte of x, where the most significant byte is the 0th byte | |
shl(x, y) | C | logical shift left y by x bits | |
shr(x, y) | C | logical shift right y by x bits | |
sar(x, y) | C | arithmetic shift right y by x bits | |
addmod(x, y, m) | F | (x + y) % m with arbitrary precision arithmetic | |
mulmod(x, y, m) | F | (x * y) % m with arbitrary precision arithmetic | |
signextend(i, x) | F | sign extend from (i*8+7)th bit counting from least significant | |
keccak256(p, n) | F | keccak(mem[p...(p+n))) | |
jump(label) | - | F | jump to label / code position |
jumpi(label, cond) | - | F | jump to label if cond is nonzero |
pc | F | current position in code | |
pop(x) | - | F | remove the element pushed by x |
dup1 ... dup16 | F | copy nth stack slot to the top (counting from top) | |
swap1 ... swap16 | * | F | swap topmost and nth stack slot below it |
mload(p) | F | mem[p...(p+32)) | |
mstore(p, v) | - | F | mem[p...(p+32)) := v |
mstore8(p, v) | - | F | mem[p] := v & 0xff (only modifies a single byte) |
sload(p) | F | storage[p] | |
sstore(p, v) | - | F | storage[p] := v |
msize | F | size of memory, i.e. largest accessed memory index | |
gas | F | gas still available to execution | |
address | F | address of the current contract / execution context | |
balance(a) | F | wei balance at address a | |
caller | F | call sender (excluding delegatecall ) |
|
callvalue | F | wei sent together with the current call | |
calldataload(p) | F | call data starting from position p (32 bytes) | |
calldatasize | F | size of call data in bytes | |
calldatacopy(t, f, s) | - | F | copy s bytes from calldata at position f to mem at position t |
codesize | F | size of the code of the current contract / execution context | |
codecopy(t, f, s) | - | F | copy s bytes from code at position f to mem at position t |
extcodesize(a) | F | size of the code at address a | |
extcodecopy(a, t, f, s) | - | F | like codecopy(t, f, s) but take code at address a |
returndatasize | B | size of the last returndata | |
returndatacopy(t, f, s) | - | B | copy s bytes from returndata at position f to mem at position t |
create(v, p, s) | F | create new contract with code mem[p...(p+s)) and send v wei and return the new address | |
create2(v, n, p, s) | C | create new contract with code mem[p...(p+s)) at address keccak256(<address> . n . keccak256(mem[p...(p+s))) and send v wei and return the new address | |
call(g, a, v, in, insize, out, outsize) | F | call contract at address a with input mem[in...(in+insize)) providing g gas and v wei and output area mem[out...(out+outsize)) returning 0 on error (eg. out of gas) and 1 on success | |
callcode(g, a, v, in, insize, out, outsize) | F | identical to call but only use the code from a and stay
in the context of the current contract otherwise |
|
delegatecall(g, a, in, insize, out, outsize) | H | identical to callcode but also keep caller
and callvalue |
|
staticcall(g, a, in, insize, out, outsize) | B | identical to call(g, a, 0, in, insize, out, outsize) but do
not allow state modifications |
|
return(p, s) | - | F | end execution, return data mem[p...(p+s)) |
revert(p, s) | - | B | end execution, revert state changes, return data mem[p...(p+s)) |
selfdestruct(a) | - | F | end execution, destroy current contract and send funds to a |
invalid | - | F | end execution with invalid instruction |
log0(p, s) | - | F | log without topics and data mem[p...(p+s)) |
log1(p, s, t1) | - | F | log with topic t1 and data mem[p...(p+s)) |
log2(p, s, t1, t2) | - | F | log with topics t1, t2 and data mem[p...(p+s)) |
log3(p, s, t1, t2, t3) | - | F | log with topics t1, t2, t3 and data mem[p...(p+s)) |
log4(p, s, t1, t2, t3, t4) | - | F | log with topics t1, t2, t3, t4 and data mem[p...(p+s)) |
origin | F | transaction sender | |
gasprice | F | gas price of the transaction | |
blockhash(b) | F | hash of block nr b - only for last 256 blocks excluding current | |
coinbase | F | current mining beneficiary | |
timestamp | F | timestamp of the current block in seconds since the epoch | |
number | F | current block number | |
difficulty | F | difficulty of the current block | |
gaslimit | F | block gas limit of the current block |
You can use integer constants by typing them in decimal or hexadecimal notation and an
appropriate PUSHi
instruction will automatically be generated. The following creates code
to add 2 and 3 resulting in 5 and then computes the bitwise and with the string "abc".
Strings are stored left-aligned and cannot be longer than 32 bytes.
assembly { 2 3 add "abc" and }
You can type opcode after opcode in the same way they will end up in bytecode. For example
adding 3
to the contents in memory at position 0x80
would be
3 0x80 mload add 0x80 mstore
As it is often hard to see what the actual arguments for certain opcodes are, Solidity inline assembly also provides a "functional style" notation where the same code would be written as follows
mstore(0x80, add(mload(0x80), 3))
Functional style expressions cannot use instructional style internally, i.e.
1 2 mstore(0x80, add)
is not valid assembly, it has to be written as
mstore(0x80, add(2, 1))
. For opcodes that do not take arguments, the
parentheses can be omitted.
Note that the order of arguments is reversed in functional-style as opposed to the instruction-style way. If you use functional-style, the first argument will end up on the stack top.
Solidity variables and other identifiers can be accessed by simply using their name.
For memory variables, this will push the address and not the value onto the
stack. Storage variables are different: Values in storage might not occupy a
full storage slot, so their "address" is composed of a slot and a byte-offset
inside that slot. To retrieve the slot pointed to by the variable x
, you
used x_slot
and to retrieve the byte-offset you used x_offset
.
In assignments (see below), we can even use local Solidity variables to assign to.
pragma solidity ^0.4.11; contract C { uint b; function f(uint x) public view returns (uint r) { assembly { r := mul(x, sload(b_slot)) // ignore the offset, we know it is zero } } }
Note
If you access variables of a type that spans less than 256 bits
(for example uint64
, address
, bytes16
or byte
),
you cannot make any assumptions about bits not part of the
encoding of the type. Especially, do not assume them to be zero.
To be safe, always clear the data properly before you use it
in a context where this is important:
uint32 x = f(); assembly { x := and(x, 0xffffffff) /* now use x */ }
To clean signed types, you can use the signextend
opcode.
Support for labels has been removed in version 0.5.0 of Solidity. Please use functions, loops, if or switch statements instead.
You can use the let
keyword to declare variables that are only visible in
inline assembly and actually only in the current {...}
-block. What happens
is that the let
instruction will create a new stack slot that is reserved
for the variable and automatically removed again when the end of the block
is reached. You need to provide an initial value for the variable which can
be just 0
, but it can also be a complex functional-style expression.
pragma solidity ^0.4.16; contract C { function f(uint x) public view returns (uint b) { assembly { let v := add(x, 1) mstore(0x80, v) { let y := add(sload(v), 1) b := y } // y is "deallocated" here b := add(b, v) } // v is "deallocated" here } }
Assignments are possible to assembly-local variables and to function-local variables. Take care that when you assign to variables that point to memory or storage, you will only change the pointer and not the data.
There are two kinds of assignments: functional-style and instruction-style.
For functional-style assignments (variable := value
), you need to provide a value in a
functional-style expression that results in exactly one stack value
and for instruction-style (=: variable
), the value is just taken from the stack top.
For both ways, the colon points to the name of the variable. The assignment
is performed by replacing the variable's value on the stack by the new value.
{ let v := 0 // functional-style assignment as part of variable declaration let g := add(v, 2) sload(10) =: v // instruction style assignment, puts the result of sload(10) into v }
Note
Instruction-style assignment is deprecated.
The if statement can be used for conditionally executing code. There is no "else" part, consider using "switch" (see below) if you need multiple alternatives.
{ if eq(value, 0) { revert(0, 0) } }
The curly braces for the body are required.
You can use a switch statement as a very basic version of "if/else".
It takes the value of an expression and compares it to several constants.
The branch corresponding to the matching constant is taken. Contrary to the
error-prone behaviour of some programming languages, control flow does
not continue from one case to the next. There can be a fallback or default
case called default
.
{ let x := 0 switch calldataload(4) case 0 { x := calldataload(0x24) } default { x := calldataload(0x44) } sstore(0, div(x, 2)) }
The list of cases does not require curly braces, but the body of a case does require them.
Assembly supports a simple for-style loop. For-style loops have a header containing an initializing part, a condition and a post-iteration part. The condition has to be a functional-style expression, while the other two are blocks. If the initializing part declares any variables, the scope of these variables is extended into the body (including the condition and the post-iteration part).
The following example computes the sum of an area in memory.
{ let x := 0 for { let i := 0 } lt(i, 0x100) { i := add(i, 0x20) } { x := add(x, mload(i)) } }
For loops can also be written so that they behave like while loops: Simply leave the initialization and post-iteration parts empty.
{ let x := 0 let i := 0 for { } lt(i, 0x100) { } { // while(i < 0x100) x := add(x, mload(i)) i := add(i, 0x20) } }
Assembly allows the definition of low-level functions. These take their arguments (and a return PC) from the stack and also put the results onto the stack. Calling a function looks the same way as executing a functional-style opcode.
Functions can be defined anywhere and are visible in the block they are
declared in. Inside a function, you cannot access local variables
defined outside of that function. There is no explicit return
statement.
If you call a function that returns multiple values, you have to assign
them to a tuple using a, b := f(x)
or let a, b := f(x)
.
The following example implements the power function by square-and-multiply.
{ function power(base, exponent) -> result { switch exponent case 0 { result := 1 } case 1 { result := base } default { result := power(mul(base, base), div(exponent, 2)) switch mod(exponent, 2) case 1 { result := mul(base, result) } } } }
Inline assembly might have a quite high-level look, but it actually is extremely low-level. Function calls, loops, ifs and switches are converted by simple rewriting rules and after that, the only thing the assembler does for you is re-arranging functional-style opcodes, managing jump labels, counting stack height for variable access and removing stack slots for assembly-local variables when the end of their block is reached. Especially for those two last cases, it is important to know that the assembler only counts stack height from top to bottom, not necessarily following control flow. Furthermore, operations like swap will only swap the contents of the stack but not the location of variables.
In contrast to EVM assembly, Solidity knows types which are narrower than 256 bits,
e.g. uint24
. In order to make them more efficient, most arithmetic operations just
treat them as 256-bit numbers and the higher-order bits are only cleaned at the
point where it is necessary, i.e. just shortly before they are written to memory
or before comparisons are performed. This means that if you access such a variable
from within inline assembly, you might have to manually clean the higher order bits
first.
Solidity manages memory in a very simple way: There is a "free memory pointer"
at position 0x40
in memory. If you want to allocate memory, just use the memory
starting from where this pointer points at and update it accordingly.
There is no built-in mechanism to release or free allocated memory.
Here is an assembly snippet that can be used for allocating memory:
function allocate(length) -> pos { pos := mload(0x40) mstore(0x40, add(pos, length)) }
The first 64 bytes of memory can be used as "scratch space" for short-term
allocation. The 32 bytes after the free memory pointer (i.e. starting at 0x60
)
is meant to be zero permanently and is used as the initial value for
empty dynamic memory arrays.
This means that the allocatable memory starts at 0x80
, which is the initial value
of the free memory pointer.
Elements in memory arrays in Solidity always occupy multiples of 32 bytes (yes, this is
even true for byte[]
, but not for bytes
and string
). Multi-dimensional memory
arrays are pointers to memory arrays. The length of a dynamic array is stored at the
first slot of the array and then only the array elements follow.
Warning
Statically-sized memory arrays do not have a length field, but it will be added soon to allow better convertibility between statically- and dynamically-sized arrays, so please do not rely on that.
The assembly language described as inline assembly above can also be used standalone and in fact, the plan is to use it as an intermediate language for the Solidity compiler. In this form, it tries to achieve several goals:
- Programs written in it should be readable, even if the code is generated by a compiler from Solidity.
- The translation from assembly to bytecode should contain as few "surprises" as possible.
- Control flow should be easy to detect to help in formal verification and optimization.
In order to achieve the first and last goal, assembly provides high-level constructs
like for
loops, if
and switch
statements and function calls. It should be possible
to write assembly programs that do not make use of explicit SWAP
, DUP
,
JUMP
and JUMPI
statements, because the first two obfuscate the data flow
and the last two obfuscate control flow. Furthermore, functional statements of
the form mul(add(x, y), 7)
are preferred over pure opcode statements like
7 y x add mul
because in the first form, it is much easier to see which
operand is used for which opcode.
The second goal is achieved by compiling the higher level constructs to bytecode in a very regular way. The only non-local operation performed by the assembler is name lookup of user-defined identifiers (functions, variables, ...), which follow very simple and regular scoping rules and cleanup of local variables from the stack.
Scoping: An identifier that is declared (label, variable, function, assembly) is only visible in the block where it was declared (including nested blocks inside the current block). It is not legal to access local variables across function borders, even if they would be in scope. Shadowing is not allowed. Local variables cannot be accessed before they were declared, but labels, functions and assemblies can. Assemblies are special blocks that are used for e.g. returning runtime code or creating contracts. No identifier from an outer assembly is visible in a sub-assembly.
If control flow passes over the end of a block, pop instructions are inserted that match the number of local variables declared in that block. Whenever a local variable is referenced, the code generator needs to know its current relative position in the stack and thus it needs to keep track of the current so-called stack height. Since all local variables are removed at the end of a block, the stack height before and after the block should be the same. If this is not the case, a warning is issued.
Using switch
, for
and functions, it should be possible to write
complex code without using jump
or jumpi
manually. This makes it much
easier to analyze the control flow, which allows for improved formal
verification and optimization.
Furthermore, if manual jumps are allowed, computing the stack height is rather complicated. The position of all local variables on the stack needs to be known, otherwise neither references to local variables nor removing local variables automatically from the stack at the end of a block will work properly.
Example:
We will follow an example compilation from Solidity to assembly. We consider the runtime bytecode of the following Solidity program:
pragma solidity ^0.4.16; contract C { function f(uint x) public pure returns (uint y) { y = 1; for (uint i = 0; i < x; i++) y = 2 * y; } }
The following assembly will be generated:
{ mstore(0x40, 0x80) // store the "free memory pointer" // function dispatcher switch div(calldataload(0), exp(2, 226)) case 0xb3de648b { let r := f(calldataload(4)) let ret := $allocate(0x20) mstore(ret, r) return(ret, 0x20) } default { revert(0, 0) } // memory allocator function $allocate(size) -> pos { pos := mload(0x40) mstore(0x40, add(pos, size)) } // the contract function function f(x) -> y { y := 1 for { let i := 0 } lt(i, x) { i := add(i, 1) } { y := mul(2, y) } } }
The tasks of the parser are the following:
- Turn the byte stream into a token stream, discarding C++-style comments (a special comment exists for source references, but we will not explain it here).
- Turn the token stream into an AST according to the grammar below
- Register identifiers with the block they are defined in (annotation to the AST node) and note from which point on, variables can be accessed.
The assembly lexer follows the one defined by Solidity itself.
Whitespace is used to delimit tokens and it consists of the characters Space, Tab and Linefeed. Comments are regular JavaScript/C++ comments and are interpreted in the same way as Whitespace.
Grammar:
AssemblyBlock = '{' AssemblyItem* '}' AssemblyItem = Identifier | AssemblyBlock | AssemblyExpression | AssemblyLocalDefinition | AssemblyAssignment | AssemblyStackAssignment | LabelDefinition | AssemblyIf | AssemblySwitch | AssemblyFunctionDefinition | AssemblyFor | 'break' | 'continue' | SubAssembly AssemblyExpression = AssemblyCall | Identifier | AssemblyLiteral AssemblyLiteral = NumberLiteral | StringLiteral | HexLiteral Identifier = [a-zA-Z_$] [a-zA-Z_0-9]* AssemblyCall = Identifier '(' ( AssemblyExpression ( ',' AssemblyExpression )* )? ')' AssemblyLocalDefinition = 'let' IdentifierOrList ( ':=' AssemblyExpression )? AssemblyAssignment = IdentifierOrList ':=' AssemblyExpression IdentifierOrList = Identifier | '(' IdentifierList ')' IdentifierList = Identifier ( ',' Identifier)* AssemblyStackAssignment = '=:' Identifier LabelDefinition = Identifier ':' AssemblyIf = 'if' AssemblyExpression AssemblyBlock AssemblySwitch = 'switch' AssemblyExpression AssemblyCase* ( 'default' AssemblyBlock )? AssemblyCase = 'case' AssemblyExpression AssemblyBlock AssemblyFunctionDefinition = 'function' Identifier '(' IdentifierList? ')' ( '->' '(' IdentifierList ')' )? AssemblyBlock AssemblyFor = 'for' ( AssemblyBlock | AssemblyExpression ) AssemblyExpression ( AssemblyBlock | AssemblyExpression ) AssemblyBlock SubAssembly = 'assembly' Identifier AssemblyBlock NumberLiteral = HexNumber | DecimalNumber HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'') StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"' HexNumber = '0x' [0-9a-fA-F]+ DecimalNumber = [0-9]+