-
Notifications
You must be signed in to change notification settings - Fork 50
/
nvmeprint.cpp
839 lines (747 loc) · 32 KB
/
nvmeprint.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
/*
* nvmeprint.cpp
*
* Home page of code is: https://www.smartmontools.org
*
* Copyright (C) 2016-24 Christian Franke
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "config.h"
#define __STDC_FORMAT_MACROS 1 // enable PRI* for C++
#include "nvmeprint.h"
const char * nvmeprint_cvsid = "$Id$"
NVMEPRINT_H_CVSID;
#include "utility.h"
#include "dev_interface.h"
#include "nvmecmds.h"
#include "atacmds.h" // dont_print_serial_number
#include "scsicmds.h" // dStrHex()
#include "smartctl.h"
#include "sg_unaligned.h"
#include <inttypes.h>
using namespace smartmontools;
// Return true if 128 bit LE integer is != 0.
static bool le128_is_non_zero(const unsigned char (& val)[16])
{
for (int i = 0; i < 16; i++) {
if (val[i])
return true;
}
return false;
}
// Format 128 bit integer for printing.
// Add value with SI prefixes if BYTES_PER_UNIT is specified.
static const char * le128_to_str(char (& str)[64], uint64_t hi, uint64_t lo, unsigned bytes_per_unit)
{
if (!hi) {
// Up to 64-bit, print exact value
format_with_thousands_sep(str, sizeof(str)-16, lo);
if (lo && bytes_per_unit && lo < 0xffffffffffffffffULL / bytes_per_unit) {
int i = strlen(str);
str[i++] = ' '; str[i++] = '[';
format_capacity(str+i, (int)sizeof(str)-i-1, lo * bytes_per_unit);
i = strlen(str);
str[i++] = ']'; str[i] = 0;
}
}
else {
// More than 64-bit, prepend '~' flag on low precision
int i = 0;
// cppcheck-suppress knownConditionTrueFalse
if (uint128_to_str_precision_bits() < 128)
str[i++] = '~';
uint128_hilo_to_str(str + i, (int)sizeof(str) - i, hi, lo);
}
return str;
}
// Format 128 bit LE integer for printing.
// Add value with SI prefixes if BYTES_PER_UNIT is specified.
static const char * le128_to_str(char (& str)[64], const unsigned char (& val)[16],
unsigned bytes_per_unit = 0)
{
uint64_t hi = val[15];
for (int i = 15-1; i >= 8; i--) {
hi <<= 8; hi += val[i];
}
uint64_t lo = val[7];
for (int i = 7-1; i >= 0; i--) {
lo <<= 8; lo += val[i];
}
return le128_to_str(str, hi, lo, bytes_per_unit);
}
// Format capacity specified as 64bit LBA count for printing.
static const char * lbacap_to_str(char (& str)[64], uint64_t lba_cnt, int lba_bits)
{
return le128_to_str(str, (lba_cnt >> (64 - lba_bits)), (lba_cnt << lba_bits), 1);
}
// Output capacity specified as 64bit LBA count to JSON
static void lbacap_to_js(const json::ref & jref, uint64_t lba_cnt, int lba_bits)
{
jref["blocks"].set_unsafe_uint64(lba_cnt);
jref["bytes"].set_unsafe_uint128((lba_cnt >> (64 - lba_bits)), (lba_cnt << lba_bits));
}
// Format a Kelvin temperature value in Celsius.
static const char * kelvin_to_str(char (& str)[64], int k)
{
if (!k) // unsupported?
str[0] = '-', str[1] = 0;
else
snprintf(str, sizeof(str), "%d Celsius", k - 273);
return str;
}
static void print_drive_info(const nvme_id_ctrl & id_ctrl, const nvme_id_ns & id_ns,
unsigned nsid, bool show_all)
{
char buf[64];
jout("Model Number: %s\n", format_char_array(buf, id_ctrl.mn));
jglb["model_name"] = buf;
if (!dont_print_serial_number) {
jout("Serial Number: %s\n", format_char_array(buf, id_ctrl.sn));
jglb["serial_number"] = buf;
}
jout("Firmware Version: %s\n", format_char_array(buf, id_ctrl.fr));
jglb["firmware_version"] = buf;
// Vendor and Subsystem IDs are usually equal
if (show_all || id_ctrl.vid != id_ctrl.ssvid) {
jout("PCI Vendor ID: 0x%04x\n", id_ctrl.vid);
jout("PCI Vendor Subsystem ID: 0x%04x\n", id_ctrl.ssvid);
}
else {
jout("PCI Vendor/Subsystem ID: 0x%04x\n", id_ctrl.vid);
}
jglb["nvme_pci_vendor"]["id"] = id_ctrl.vid;
jglb["nvme_pci_vendor"]["subsystem_id"] = id_ctrl.ssvid;
jout("IEEE OUI Identifier: 0x%02x%02x%02x\n",
id_ctrl.ieee[2], id_ctrl.ieee[1], id_ctrl.ieee[0]);
jglb["nvme_ieee_oui_identifier"] = sg_get_unaligned_le(3, id_ctrl.ieee);
// Capacity info is optional for devices without namespace management
if (show_all || le128_is_non_zero(id_ctrl.tnvmcap) || le128_is_non_zero(id_ctrl.unvmcap)) {
jout("Total NVM Capacity: %s\n", le128_to_str(buf, id_ctrl.tnvmcap, 1));
jglb["nvme_total_capacity"].set_unsafe_le128(id_ctrl.tnvmcap);
jout("Unallocated NVM Capacity: %s\n", le128_to_str(buf, id_ctrl.unvmcap, 1));
jglb["nvme_unallocated_capacity"].set_unsafe_le128(id_ctrl.unvmcap);
}
jout("Controller ID: %d\n", id_ctrl.cntlid);
jglb["nvme_controller_id"] = id_ctrl.cntlid;
if (id_ctrl.ver) { // NVMe 1.2
int i = snprintf(buf, sizeof(buf), "%u.%u", id_ctrl.ver >> 16, (id_ctrl.ver >> 8) & 0xff);
if (i > 0 && (id_ctrl.ver & 0xff))
snprintf(buf+i, sizeof(buf)-i, ".%u", id_ctrl.ver & 0xff);
}
else
snprintf(buf, sizeof(buf), "<1.2");
jout("NVMe Version: %s\n", buf);
jglb["nvme_version"]["string"] = buf;
jglb["nvme_version"]["value"] = id_ctrl.ver;
// Print namespace info if available
jout("Number of Namespaces: %u\n", id_ctrl.nn);
jglb["nvme_number_of_namespaces"] = id_ctrl.nn;
if (nsid && id_ns.nsze) {
const char * align = &(" "[nsid < 10 ? 0 : (nsid < 100 ? 1 : 2)]);
int fmt_lba_bits = id_ns.lbaf[id_ns.flbas & 0xf].ds;
json::ref jrns = jglb["nvme_namespaces"][0];
jrns["id"] = nsid;
// Size and Capacity are equal if thin provisioning is not supported
if (show_all || id_ns.ncap != id_ns.nsze || (id_ns.nsfeat & 0x01)) {
jout("Namespace %u Size: %s%s\n", nsid, align,
lbacap_to_str(buf, id_ns.nsze, fmt_lba_bits));
jout("Namespace %u Capacity: %s%s\n", nsid, align,
lbacap_to_str(buf, id_ns.ncap, fmt_lba_bits));
}
else {
jout("Namespace %u Size/Capacity: %s%s\n", nsid, align,
lbacap_to_str(buf, id_ns.nsze, fmt_lba_bits));
}
lbacap_to_js(jrns["size"], id_ns.nsze, fmt_lba_bits);
lbacap_to_js(jrns["capacity"], id_ns.ncap, fmt_lba_bits);
lbacap_to_js(jglb["user_capacity"], id_ns.ncap, fmt_lba_bits); // TODO: use nsze?
// Utilization may be always equal to Capacity if thin provisioning is not supported
if (show_all || id_ns.nuse != id_ns.ncap || (id_ns.nsfeat & 0x01))
jout("Namespace %u Utilization: %s%s\n", nsid, align,
lbacap_to_str(buf, id_ns.nuse, fmt_lba_bits));
lbacap_to_js(jrns["utilization"], id_ns.nuse, fmt_lba_bits);
jout("Namespace %u Formatted LBA Size: %s%u\n", nsid, align, (1U << fmt_lba_bits));
jrns["formatted_lba_size"] = (1U << fmt_lba_bits);
jglb["logical_block_size"] = (1U << fmt_lba_bits);
if (!dont_print_serial_number && (show_all || nonempty(id_ns.eui64, sizeof(id_ns.eui64)))) {
jout("Namespace %u IEEE EUI-64: %s%02x%02x%02x %02x%02x%02x%02x%02x\n",
nsid, align, id_ns.eui64[0], id_ns.eui64[1], id_ns.eui64[2], id_ns.eui64[3],
id_ns.eui64[4], id_ns.eui64[5], id_ns.eui64[6], id_ns.eui64[7]);
jrns["eui64"]["oui"] = sg_get_unaligned_be(3, id_ns.eui64);
jrns["eui64"]["ext_id"] = sg_get_unaligned_be(5, id_ns.eui64 + 3);
}
}
// SMART/Health Information is mandatory
jglb["smart_support"] += { {"available", true}, {"enabled", true} };
jout_startup_datetime("Local Time is: ");
}
// Format scaled power value.
static const char * format_power(char (& str)[16], unsigned power, unsigned scale)
{
switch (scale & 0x3) {
case 0: // not reported
str[0] = '-'; str[1] = ' '; str[2] = 0; break;
case 1: // 0.0001W
snprintf(str, sizeof(str), "%u.%04uW", power / 10000, power % 10000); break;
case 2: // 0.01W
snprintf(str, sizeof(str), "%u.%02uW", power / 100, power % 100); break;
default: // reserved
str[0] = '?'; str[1] = 0; break;
}
return str;
}
static void print_drive_capabilities(const nvme_id_ctrl & id_ctrl, const nvme_id_ns & id_ns,
unsigned nsid, bool show_all)
{
// Figure 112 of NVM Express Base Specification Revision 1.3d, March 20, 2019
// Figure 251 of NVM Express Base Specification Revision 1.4c, March 9, 2021
// Figure 275 of NVM Express Base Specification Revision 2.0c, October 4, 2022
pout("Firmware Updates (0x%02x): %d Slot%s%s%s%s%s\n", id_ctrl.frmw,
((id_ctrl.frmw >> 1) & 0x7), (((id_ctrl.frmw >> 1) & 0x7) != 1 ? "s" : ""),
((id_ctrl.frmw & 0x01) ? ", Slot 1 R/O" : ""),
((id_ctrl.frmw & 0x10) ? ", no Reset required" : ""),
((id_ctrl.frmw & 0x20) ? ", multiple detected" : ""), // NVMe 2.0
((id_ctrl.frmw & ~0x3f) ? ", *Other*" : ""));
if (show_all || id_ctrl.oacs)
pout("Optional Admin Commands (0x%04x): %s%s%s%s%s%s%s%s%s%s%s%s%s\n", id_ctrl.oacs,
(!id_ctrl.oacs ? " -" : ""),
((id_ctrl.oacs & 0x0001) ? " Security" : ""),
((id_ctrl.oacs & 0x0002) ? " Format" : ""),
((id_ctrl.oacs & 0x0004) ? " Frmw_DL" : ""),
((id_ctrl.oacs & 0x0008) ? " NS_Mngmt" : ""), // NVMe 1.2
((id_ctrl.oacs & 0x0010) ? " Self_Test" : ""), // NVMe 1.3 ...
((id_ctrl.oacs & 0x0020) ? " Directvs" : ""),
((id_ctrl.oacs & 0x0040) ? " MI_Snd/Rec" : ""),
((id_ctrl.oacs & 0x0080) ? " Vrt_Mngmt" : ""),
((id_ctrl.oacs & 0x0100) ? " Drbl_Bf_Cfg" : ""),
((id_ctrl.oacs & 0x0200) ? " Get_LBA_Sts" : ""), // NVMe 1.4
((id_ctrl.oacs & 0x0400) ? " Lockdown" : ""), // NVMe 2.0
((id_ctrl.oacs & ~0x07ff) ? " *Other*" : ""));
if (show_all || id_ctrl.oncs)
pout("Optional NVM Commands (0x%04x): %s%s%s%s%s%s%s%s%s%s%s\n", id_ctrl.oncs,
(!id_ctrl.oncs ? " -" : ""),
((id_ctrl.oncs & 0x0001) ? " Comp" : ""),
((id_ctrl.oncs & 0x0002) ? " Wr_Unc" : ""),
((id_ctrl.oncs & 0x0004) ? " DS_Mngmt" : ""),
((id_ctrl.oncs & 0x0008) ? " Wr_Zero" : ""), // NVMe 1.1 ...
((id_ctrl.oncs & 0x0010) ? " Sav/Sel_Feat" : ""),
((id_ctrl.oncs & 0x0020) ? " Resv" : ""),
((id_ctrl.oncs & 0x0040) ? " Timestmp" : ""), // NVMe 1.3
((id_ctrl.oncs & 0x0080) ? " Verify" : ""), // NVMe 1.4
((id_ctrl.oncs & 0x0100) ? " Copy" : ""), // NVMe 2.0
((id_ctrl.oncs & ~0x01ff) ? " *Other*" : ""));
if (show_all || id_ctrl.lpa)
pout("Log Page Attributes (0x%02x): %s%s%s%s%s%s%s%s%s\n", id_ctrl.lpa,
(!id_ctrl.lpa ? " -" : ""),
((id_ctrl.lpa & 0x01) ? " S/H_per_NS" : ""),
((id_ctrl.lpa & 0x02) ? " Cmd_Eff_Lg" : ""), // NVMe 1.2
((id_ctrl.lpa & 0x04) ? " Ext_Get_Lg" : ""), // NVMe 1.2.1
((id_ctrl.lpa & 0x08) ? " Telmtry_Lg" : ""), // NVMe 1.3
((id_ctrl.lpa & 0x10) ? " Pers_Ev_Lg" : ""), // NVMe 1.4
((id_ctrl.lpa & 0x20) ? " Log0_FISE_MI" : ""), // NVMe 2.0 ...
((id_ctrl.lpa & 0x40) ? " Telmtry_Ar_4" : ""),
((id_ctrl.lpa & ~0x7f) ? " *Other*" : ""));
if (id_ctrl.mdts)
pout("Maximum Data Transfer Size: %u Pages\n", (1U << id_ctrl.mdts));
else if (show_all)
pout("Maximum Data Transfer Size: -\n");
// Temperature thresholds are optional
char buf[64];
if (show_all || id_ctrl.wctemp)
pout("Warning Comp. Temp. Threshold: %s\n", kelvin_to_str(buf, id_ctrl.wctemp));
if (show_all || id_ctrl.cctemp)
pout("Critical Comp. Temp. Threshold: %s\n", kelvin_to_str(buf, id_ctrl.cctemp));
// Figure 110 of NVM Express Base Specification Revision 1.3d, March 20, 2019
// Figure 249 of NVM Express Base Specification Revision 1.4c, March 9, 2021
// Figure 97 of NVM Express NVM Command Set Specification, Revision 1.0c, October 3, 2022
if (nsid && (show_all || id_ns.nsfeat)) {
const char * align = &(" "[nsid < 10 ? 0 : (nsid < 100 ? 1 : 2)]);
pout("Namespace %u Features (0x%02x): %s%s%s%s%s%s%s%s\n", nsid, id_ns.nsfeat, align,
(!id_ns.nsfeat ? " -" : ""),
((id_ns.nsfeat & 0x01) ? " Thin_Prov" : ""),
((id_ns.nsfeat & 0x02) ? " NA_Fields" : ""), // NVMe 1.2 ...
((id_ns.nsfeat & 0x04) ? " Dea/Unw_Error" : ""),
((id_ns.nsfeat & 0x08) ? " No_ID_Reuse" : ""), // NVMe 1.3
((id_ns.nsfeat & 0x10) ? " NP_Fields" : ""), // NVMe 1.4
((id_ns.nsfeat & ~0x1f) ? " *Other*" : ""));
}
// Print Power States
pout("\nSupported Power States\n");
pout("St Op Max Active Idle RL RT WL WT Ent_Lat Ex_Lat\n");
for (int i = 0; i <= id_ctrl.npss /* 1-based */ && i < 32; i++) {
char p1[16], p2[16], p3[16];
const nvme_id_power_state & ps = id_ctrl.psd[i];
pout("%2d %c %9s %8s %8s %3d %2d %2d %2d %8u %7u\n", i,
((ps.flags & 0x02) ? '-' : '+'),
format_power(p1, ps.max_power, ((ps.flags & 0x01) ? 1 : 2)),
format_power(p2, ps.active_power, ps.active_work_scale),
format_power(p3, ps.idle_power, ps.idle_scale),
ps.read_lat & 0x1f, ps.read_tput & 0x1f,
ps.write_lat & 0x1f, ps.write_tput & 0x1f,
ps.entry_lat, ps.exit_lat);
}
// Print LBA sizes
if (nsid && id_ns.lbaf[0].ds) {
pout("\nSupported LBA Sizes (NSID 0x%x)\n", nsid);
pout("Id Fmt Data Metadt Rel_Perf\n");
for (int i = 0; i <= id_ns.nlbaf /* 1-based */ && i < 16; i++) {
const nvme_lbaf & lba = id_ns.lbaf[i];
pout("%2d %c %7u %7d %9d\n", i, (i == id_ns.flbas ? '+' : '-'),
(1U << lba.ds), lba.ms, lba.rp);
}
}
}
static void print_critical_warning(unsigned char w)
{
jout("SMART overall-health self-assessment test result: %s\n",
(!w ? "PASSED" : "FAILED!"));
jglb["smart_status"]["passed"] = !w;
json::ref jref = jglb["smart_status"]["nvme"];
jref["value"] = w;
if (w) {
if (w & 0x01)
jout("- available spare has fallen below threshold\n");
jref["spare_below_threshold"] = !!(w & 0x01);
if (w & 0x02)
jout("- temperature is above or below threshold\n");
jref["temperature_above_or_below_threshold"] = !!(w & 0x02);
if (w & 0x04)
jout("- NVM subsystem reliability has been degraded\n");
jref["reliability_degraded"] = !!(w & 0x04);
if (w & 0x08)
jout("- media has been placed in read only mode\n");
jref["media_read_only"] = !!(w & 0x08);
if (w & 0x10)
jout("- volatile memory backup device has failed\n");
jref["volatile_memory_backup_failed"] = !!(w & 0x10);
if (w & 0x20)
jout("- persistent memory region has become read-only or unreliable\n");
jref["persistent_memory_region_unreliable"] = !!(w & 0x20);
if (w & ~0x3f)
jout("- unknown critical warning(s) (0x%02x)\n", w & ~0x3f);
jref["other"] = w & ~0x3f;
}
jout("\n");
}
static void print_smart_log(const nvme_smart_log & smart_log,
const nvme_id_ctrl & id_ctrl, bool show_all)
{
json::ref jref = jglb["nvme_smart_health_information_log"];
char buf[64];
jout("SMART/Health Information (NVMe Log 0x02)\n");
jout("Critical Warning: 0x%02x\n", smart_log.critical_warning);
jref["critical_warning"] = smart_log.critical_warning;
int k = sg_get_unaligned_le16(smart_log.temperature);
jout("Temperature: %s\n", kelvin_to_str(buf, k));
if (k) {
jref["temperature"] = k - 273;
jglb["temperature"]["current"] = k - 273;
}
jout("Available Spare: %u%%\n", smart_log.avail_spare);
jref["available_spare"] = smart_log.avail_spare;
jout("Available Spare Threshold: %u%%\n", smart_log.spare_thresh);
jref["available_spare_threshold"] = smart_log.spare_thresh;
jout("Percentage Used: %u%%\n", smart_log.percent_used);
jref["percentage_used"] = smart_log.percent_used;
jout("Data Units Read: %s\n", le128_to_str(buf, smart_log.data_units_read, 1000*512));
jref["data_units_read"].set_unsafe_le128(smart_log.data_units_read);
jout("Data Units Written: %s\n", le128_to_str(buf, smart_log.data_units_written, 1000*512));
jref["data_units_written"].set_unsafe_le128(smart_log.data_units_written);
jout("Host Read Commands: %s\n", le128_to_str(buf, smart_log.host_reads));
jref["host_reads"].set_unsafe_le128(smart_log.host_reads);
jout("Host Write Commands: %s\n", le128_to_str(buf, smart_log.host_writes));
jref["host_writes"].set_unsafe_le128(smart_log.host_writes);
jout("Controller Busy Time: %s\n", le128_to_str(buf, smart_log.ctrl_busy_time));
jref["controller_busy_time"].set_unsafe_le128(smart_log.ctrl_busy_time);
jout("Power Cycles: %s\n", le128_to_str(buf, smart_log.power_cycles));
jref["power_cycles"].set_unsafe_le128(smart_log.power_cycles);
jglb["power_cycle_count"].set_if_safe_le128(smart_log.power_cycles);
jout("Power On Hours: %s\n", le128_to_str(buf, smart_log.power_on_hours));
jref["power_on_hours"].set_unsafe_le128(smart_log.power_on_hours);
jglb["power_on_time"]["hours"].set_if_safe_le128(smart_log.power_on_hours);
jout("Unsafe Shutdowns: %s\n", le128_to_str(buf, smart_log.unsafe_shutdowns));
jref["unsafe_shutdowns"].set_unsafe_le128(smart_log.unsafe_shutdowns);
jout("Media and Data Integrity Errors: %s\n", le128_to_str(buf, smart_log.media_errors));
jref["media_errors"].set_unsafe_le128(smart_log.media_errors);
jout("Error Information Log Entries: %s\n", le128_to_str(buf, smart_log.num_err_log_entries));
jref["num_err_log_entries"].set_unsafe_le128(smart_log.num_err_log_entries);
// Temperature thresholds are optional
if (show_all || id_ctrl.wctemp || smart_log.warning_temp_time) {
jout("Warning Comp. Temperature Time: %d\n", smart_log.warning_temp_time);
jref["warning_temp_time"] = smart_log.warning_temp_time;
}
if (show_all || id_ctrl.cctemp || smart_log.critical_comp_time) {
jout("Critical Comp. Temperature Time: %d\n", smart_log.critical_comp_time);
jref["critical_comp_time"] = smart_log.critical_comp_time;
}
// Temperature sensors are optional
for (int i = 0; i < 8; i++) {
k = smart_log.temp_sensor[i];
if (show_all || k) {
jout("Temperature Sensor %d: %s\n", i + 1,
kelvin_to_str(buf, k));
if (k)
jref["temperature_sensors"][i] = k - 273;
}
}
if (show_all || smart_log.thm_temp1_trans_count)
pout("Thermal Temp. 1 Transition Count: %d\n", smart_log.thm_temp1_trans_count);
if (show_all || smart_log.thm_temp2_trans_count)
pout("Thermal Temp. 2 Transition Count: %d\n", smart_log.thm_temp2_trans_count);
if (show_all || smart_log.thm_temp1_total_time)
pout("Thermal Temp. 1 Total Time: %d\n", smart_log.thm_temp1_total_time);
if (show_all || smart_log.thm_temp2_total_time)
pout("Thermal Temp. 2 Total Time: %d\n", smart_log.thm_temp2_total_time);
pout("\n");
}
static void print_error_log(const nvme_error_log_page * error_log,
unsigned read_entries, unsigned max_entries)
{
// Figure 93 of NVM Express Base Specification Revision 1.3d, March 20, 2019
// Figure 197 of NVM Express Base Specification Revision 1.4c, March 9, 2021
json::ref jref = jglb["nvme_error_information_log"];
jout("Error Information (NVMe Log 0x01, %u of %u entries)\n",
read_entries, max_entries);
// Search last valid entry
unsigned valid_entries = read_entries;
while (valid_entries && !error_log[valid_entries-1].error_count)
valid_entries--;
unsigned unread_entries = 0;
if (valid_entries == read_entries && read_entries < max_entries)
unread_entries = max_entries - read_entries;
jref += {
{ "size", max_entries },
{ "read", read_entries },
{ "unread", unread_entries },
};
if (!valid_entries) {
jout("No Errors Logged\n\n");
return;
}
jout("Num ErrCount SQId CmdId Status PELoc LBA NSID VS Message\n");
int unused = 0;
for (unsigned i = 0; i < valid_entries; i++) {
const nvme_error_log_page & e = error_log[i];
if (!e.error_count) {
// unused or invalid entry
unused++;
continue;
}
if (unused) {
jout(" - [%d unused entr%s]\n", unused, (unused == 1 ? "y" : "ies"));
unused = 0;
}
json::ref jrefi = jref["table"][i];
jrefi["error_count"] = e.error_count;
const char * msg = "-"; char msgbuf[64]{};
char sq[16] = "-", cm[16] = "-", st[16] = "-", pe[16] = "-";
char lb[32] = "-", ns[16] = "-", vs[8] = "-";
if (e.sqid != 0xffff) {
snprintf(sq, sizeof(sq), "%d", e.sqid);
jrefi["submission_queue_id"] = e.sqid;
}
if (e.cmdid != 0xffff) {
snprintf(cm, sizeof(cm), "0x%04x", e.cmdid);
jrefi["command_id"] = e.cmdid;
}
if (e.status_field != 0xffff) {
snprintf(st, sizeof(st), "0x%04x", e.status_field);
uint16_t s = e.status_field >> 1;
msg = nvme_status_to_info_str(msgbuf, s);
jrefi += {
{ "status_field", {
{ "value", s },
{ "do_not_retry", !!(s & 0x4000) },
{ "status_code_type", (s >> 8) & 0x7 },
{ "status_code" , (uint8_t)s },
{ "string", msg }
}},
{ "phase_tag", !!(e.status_field & 0x0001) }
};
}
if (e.parm_error_location != 0xffff) {
snprintf(pe, sizeof(pe), "0x%03x", e.parm_error_location);
jrefi["parm_error_location"] = e.parm_error_location;
}
if (e.lba != 0xffffffffffffffffULL) {
snprintf(lb, sizeof(lb), "%" PRIu64, e.lba);
jrefi["lba"]["value"].set_unsafe_uint64(e.lba);
}
if (e.nsid != 0xffffffffU) {
snprintf(ns, sizeof(ns), "%u", e.nsid);
jrefi["nsid"] = e.nsid;
}
if (e.vs != 0x00) {
snprintf(vs, sizeof(vs), "0x%02x", e.vs);
jrefi["vendor_specific"] = e.vs;
}
// TODO: TRTYPE, command/transport specific information
jout("%3u %10" PRIu64 " %5s %7s %7s %6s %12s %5s %5s %s\n",
i, e.error_count, sq, cm, st, pe, lb, ns, vs, msg);
}
if (unread_entries)
jout("... (%u entries not read)\n", unread_entries);
jout("\n");
}
static void print_self_test_log(const nvme_self_test_log & self_test_log, unsigned nsid)
{
// Figure 99 of NVM Express Base Specification Revision 1.3d, March 20, 2019
// Figure 203 of NVM Express Base Specification Revision 1.4c, March 9, 2021
json::ref jref = jglb["nvme_self_test_log"];
jout("Self-test Log (NVMe Log 0x06, NSID 0x%x)\n", nsid);
jref["nsid"] = (nsid != 0xffffffff ? (int64_t)nsid : -1);
const char * s; char buf[32];
switch (self_test_log.current_operation & 0xf) {
case 0x0: s = "No self-test in progress"; break;
case 0x1: s = "Short self-test in progress"; break;
case 0x2: s = "Extended self-test in progress"; break;
case 0xe: s = "Vendor specific self-test in progress"; break;
default: snprintf(buf, sizeof(buf), "Unknown status (0x%x)",
self_test_log.current_operation & 0xf);
s = buf; break;
}
jout("Self-test status: %s", s);
jref["current_self_test_operation"] += {
{ "value", self_test_log.current_operation & 0xf },
{ "string", s }
};
if (self_test_log.current_operation & 0xf) {
jout(" (%d%% completed)", self_test_log.current_completion & 0x7f);
jref["current_self_test_completion_percent"] = self_test_log.current_completion & 0x7f;
}
jout("\n");
int cnt = 0;
for (unsigned i = 0; i < 20; i++) {
const nvme_self_test_result & r = self_test_log.results[i];
uint8_t op = r.self_test_status >> 4;
uint8_t res = r.self_test_status & 0xf;
if (!op || res == 0xf)
continue; // unused entry
json::ref jrefi = jref["table"][i];
const char * t; char buf2[32];
switch (op) {
case 0x1: t = "Short"; break;
case 0x2: t = "Extended"; break;
case 0xe: t = "Vendor specific"; break;
default: snprintf(buf2, sizeof(buf2), "Unknown (0x%x)", op);
t = buf2; break;
}
switch (res) {
case 0x0: s = "Completed without error"; break;
case 0x1: s = "Aborted: Self-test command"; break;
case 0x2: s = "Aborted: Controller Reset"; break;
case 0x3: s = "Aborted: Namespace removed"; break;
case 0x4: s = "Aborted: Format NVM command"; break;
case 0x5: s = "Fatal or unknown test error"; break;
case 0x6: s = "Completed: unknown failed segment"; break;
case 0x7: s = "Completed: failed segments"; break;
case 0x8: s = "Aborted: unknown reason"; break;
case 0x9: s = "Aborted: sanitize operation"; break;
default: snprintf(buf, sizeof(buf), "Unknown result (0x%x)", res);
s = buf; break;
}
uint64_t poh = sg_get_unaligned_le64(r.power_on_hours);
jrefi += {
{ "self_test_code", { { "value", op }, { "string", t } } },
{ "self_test_result", { { "value", res }, { "string", s } } },
{ "power_on_hours", poh }
};
char sg[8] = "-", ns[16] = "-", lb[32] = "-", st[8] = "-", sc[8] = "-";
if (res == 0x7) {
snprintf(sg, sizeof(sg), "%d", r.segment);
jrefi["segment"] = r.segment;
}
if (r.valid & 0x01) {
if (r.nsid == 0xffffffff)
ns[0] = '*', ns[1] = 0;
else
snprintf(ns, sizeof(ns), "%u", r.nsid);
// Broadcast = -1
jrefi["nsid"] = (r.nsid != 0xffffffff ? (int64_t)r.nsid : -1);
}
if (r.valid & 0x02) {
uint64_t lba = sg_get_unaligned_le64(r.lba);
snprintf(lb, sizeof(lb), "%" PRIu64, lba);
jrefi["lba"] = lba;
}
if (r.valid & 0x04) {
snprintf(st, sizeof(st), "0x%x", r.status_code_type);
jrefi["status_code_type"] = r.status_code_type;
}
if (r.valid & 0x08) {
snprintf(sc, sizeof(sc), "0x%02x", r.status_code);
jrefi["status_code"] = r.status_code;
}
if (++cnt == 1)
jout("Num Test_Description Status Power_on_Hours Failing_LBA NSID Seg SCT Code\n");
jout("%2u %-17s %-33s %9" PRIu64 " %12s %5s %3s %3s %4s\n", i, t, s, poh, lb, ns, sg, st, sc);
}
if (!cnt)
jout("No Self-tests Logged\n");
jout("\n");
}
int nvmePrintMain(nvme_device * device, const nvme_print_options & options)
{
if (!( options.drive_info || options.drive_capabilities
|| options.smart_check_status || options.smart_vendor_attrib
|| options.smart_selftest_log || options.error_log_entries
|| options.log_page_size || options.smart_selftest_type )) {
pout("NVMe device successfully opened\n\n"
"Use 'smartctl -a' (or '-x') to print SMART (and more) information\n\n");
return 0;
}
// Show unset optional values only if debugging is enabled
bool show_all = (nvme_debugmode > 0);
// Read Identify Controller always
nvme_id_ctrl id_ctrl;
if (!nvme_read_id_ctrl(device, id_ctrl)) {
jerr("Read NVMe Identify Controller failed: %s\n", device->get_errmsg());
return FAILID;
}
// Print Identify Controller/Namespace info
if (options.drive_info || options.drive_capabilities) {
pout("=== START OF INFORMATION SECTION ===\n");
nvme_id_ns id_ns; memset(&id_ns, 0, sizeof(id_ns));
unsigned nsid = device->get_nsid();
if (nsid == 0xffffffffU) {
// Broadcast namespace
if (id_ctrl.nn == 1) {
// No namespace management, get size from single namespace
nsid = 1;
if (!nvme_read_id_ns(device, nsid, id_ns))
nsid = 0;
}
}
else {
// Identify current namespace
if (!nvme_read_id_ns(device, nsid, id_ns)) {
jerr("Read NVMe Identify Namespace 0x%x failed: %s\n", nsid, device->get_errmsg());
return FAILID;
}
}
if (options.drive_info)
print_drive_info(id_ctrl, id_ns, nsid, show_all);
if (options.drive_capabilities)
print_drive_capabilities(id_ctrl, id_ns, nsid, show_all);
pout("\n");
}
if ( options.smart_check_status || options.smart_vendor_attrib
|| options.error_log_entries || options.smart_selftest_log )
pout("=== START OF SMART DATA SECTION ===\n");
// Print SMART Status and SMART/Health Information
int retval = 0;
if (options.smart_check_status || options.smart_vendor_attrib) {
nvme_smart_log smart_log;
if (!nvme_read_smart_log(device, smart_log)) {
jerr("Read NVMe SMART/Health Information failed: %s\n\n", device->get_errmsg());
return FAILSMART;
}
if (options.smart_check_status) {
print_critical_warning(smart_log.critical_warning);
if (smart_log.critical_warning)
retval |= FAILSTATUS;
}
if (options.smart_vendor_attrib) {
print_smart_log(smart_log, id_ctrl, show_all);
}
}
// Check for Log Page Offset support
bool lpo_sup = !!(id_ctrl.lpa & 0x04);
// Print Error Information Log
if (options.error_log_entries) {
unsigned max_entries = id_ctrl.elpe + 1; // 0's based value
unsigned want_entries = options.error_log_entries;
if (want_entries > max_entries)
want_entries = max_entries;
raw_buffer error_log_buf(want_entries * sizeof(nvme_error_log_page));
nvme_error_log_page * error_log =
reinterpret_cast<nvme_error_log_page *>(error_log_buf.data());
unsigned read_entries = nvme_read_error_log(device, error_log, want_entries, lpo_sup);
if (!read_entries) {
jerr("Read %u entries from Error Information Log failed: %s\n\n",
want_entries, device->get_errmsg());
return retval | FAILSMART;
}
if (read_entries < want_entries)
jerr("Read Error Information Log failed, %u entries missing: %s\n",
want_entries - read_entries, device->get_errmsg());
print_error_log(error_log, read_entries, max_entries);
}
// Check for self-test support
bool self_test_sup = !!(id_ctrl.oacs & 0x0010);
// Use broadcast NSID for self-tests if only one namespace is supported.
// Some single namespace devices return failure if NSID=1 is used to
// address self-tests.
// TODO: Support NSID=0 to test controller
unsigned self_test_nsid = (id_ctrl.nn == 1 ? 0xffffffff : device->get_nsid());
// Read and print Self-test log, check for running test
int self_test_completion = -1;
if (options.smart_selftest_log || options.smart_selftest_type) {
if (!self_test_sup)
pout("Self-tests not supported\n\n");
else {
nvme_self_test_log self_test_log;
if (!nvme_read_self_test_log(device, self_test_nsid, self_test_log)) {
jerr("Read Self-test Log failed: %s\n\n", device->get_errmsg());
return retval | FAILSMART;
}
if (options.smart_selftest_log)
print_self_test_log(self_test_log, self_test_nsid);
if (self_test_log.current_operation & 0xf)
self_test_completion = self_test_log.current_completion & 0x7f;
}
}
// Dump log page
if (options.log_page_size) {
// Align size to dword boundary
unsigned size = ((options.log_page_size + 4-1) / 4) * 4;
raw_buffer log_buf(size);
unsigned nsid;
switch (options.log_page) {
case 1:
case 2:
case 3:
nsid = 0xffffffff;
break;
default:
nsid = device->get_nsid();
break;
}
unsigned read_bytes = nvme_read_log_page(device, nsid, options.log_page, log_buf.data(),
size, lpo_sup);
if (!read_bytes) {
jerr("Read NVMe Log 0x%02x (NSID 0x%x) failed: %s\n\n", options.log_page, nsid,
device->get_errmsg());
return retval | FAILSMART;
}
if (read_bytes < size)
jerr("Read NVMe Log 0x%02x failed, 0x%x bytes missing: %s\n",
options.log_page, size - read_bytes, device->get_errmsg());
pout("NVMe Log 0x%02x (NSID 0x%x, 0x%04x bytes)\n", options.log_page, nsid, read_bytes);
dStrHex(log_buf.data(), read_bytes, 0);
pout("\n");
}
// Start self-test
if (self_test_sup && options.smart_selftest_type) {
bool self_test_abort = (options.smart_selftest_type == 0xf);
if (!self_test_abort && self_test_completion >= 0) {
pout("Can't start self-test without aborting current test (%2d%% completed)\n"
"Use smartctl -X to abort test\n", self_test_completion);
retval |= FAILSMART;
}
else {
if (!nvme_self_test(device, options.smart_selftest_type, self_test_nsid)) {
jerr("NVMe Self-test cmd with type=0x%x, nsid=0x%x failed: %s\n\n",
options.smart_selftest_type, self_test_nsid, device->get_errmsg());
return retval | FAILSMART;
}
if (!self_test_abort)
pout("Self-test has begun (NSID 0x%x)\n"
"Use smartctl -X to abort test\n", self_test_nsid);
else
pout("Self-test aborted! (NSID 0x%x)\n", self_test_nsid);
}
}
return retval;
}