-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathBalancedBinaryTree.java
55 lines (46 loc) · 1.53 KB
/
BalancedBinaryTree.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
/*
* Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a
binary tree in which the depth of the two subtrees of every node
never differ by more than 1.
Example
Given binary tree A={3,9,20,#,#,15,7}, B={3,#,20,15,7}
A) 3 B) 3
/ \ \
9 20 20
/ \ / \
15 7 15 7
The binary tree A is a height-balanced binary tree, but B is not.
*/
public class BalancedBinaryTree {
/**
* @param root: The root of binary tree.
* @return: True if this Binary tree is Balanced, or false.
*/
public boolean isBalanced(TreeNode root) {
return checkDepth(root) != -1;
}
public int checkDepth(TreeNode root) {
if (root == null)
return 0;
int left = checkDepth(root.left);
if (left == -1)
return -1;
int right = checkDepth(root.right);
if (right == -1 || Math.abs(left - right) > 1)
return -1;
return 1 + Math.max(left, right);
}
/*******************************************************************/
public boolean isBalanced(TreeNode root) {
if (root == null)
return true;
return Math.abs(depth(root.left) - depth(root.right)) <= 1
&& isBalanced(root.left) && isBalanced(root.right);
}
public int depth(TreeNode root) {
if (root == null)
return 0;
return 1 + Math.max(depth(root.left), depth(root.right));
}
}