-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathDistinctSubsequences.java
57 lines (49 loc) · 1.7 KB
/
DistinctSubsequences.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
/*
* Given a string S and a string T, count the number of
* distinct subsequences of T in S.
A subsequence of a string is a new string which is formed
from the original string by deleting some (can be none) of
the characters without disturbing the relative positions
of the remaining characters. (ie, "ACE" is a subsequence of
"ABCDE" while "AEC" is not).
Example
Given S = "rabbbit", T = "rabbit", return 3.
Challenge
Do it in O(n^2) time and O(n) memory.
O(n2) memory is also acceptable if you do not know how to
optimize memory.
*/
public class DistinctSubsequences {
/**
* @param S, T: Two string.
* @return: Count the number of distinct subsequences
*/
public int numDistinct(String S, String T) {
int[] dp = new int[T.length() + 1];
dp[0] = 1;
for (int i = 0; i < S.length(); ++i) {
for (int j = T.length() - 1; j >= 0; --j) {
if (S.charAt(i) == T.charAt(j)) {
dp[j + 1] += dp[j];
}
}
}
return dp[T.length()];
}
/*******************************************************************/
public int numDistinct(String S, String T) {
int[][] dp = new int[S.length() + 1][T.length() + 1];
for (int i = 0; i <= S.length(); ++i) {
dp[i][0] = 1;
}
for (int i = 0; i < S.length(); ++i) {
for (int j = 0; j < T.length(); ++j) {
dp[i + 1][j + 1] = dp[i][j + 1];
if (S.charAt(i) == T.charAt(j)) {
dp[i + 1][j + 1] += dp[i][j];
}
}
}
return dp[S.length()][T.length()];
}
}